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Count data

@ Count data is another common type of data in observational
and epidemiological studies

@ This type of data naturally arises from studies investigating
the incidence or mortality of diseases in a population

@ The Poisson distribution is a natural choice to model the
distribution of such data
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Poisson regression

@ As with the binomial distribution leading to logistic regression,
a simple Poisson model is quite limited

e We want to allow each sampling unit (person, county, etc.) to
have a unique rate parameter )\;, depending on the
explanatory variables

@ The random and systematic components are as follows:

e Random component: y; ~ Pois();)
o Systematic component: 7; = x. 3
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Poisson regression: Link function

@ Recall that the canonical link for the Poisson distribution is
the log link

@ Thus,

log(A\;) = m;
Ai = exp(m;)

@ Note again that the canonical link ensures that \; > 0, as it
must be for the Poisson distribution
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Belgian AIDS data

As a first example of Poisson regression, consider the following
data on the number of new cases of AIDS in Belgium, 1981-1993:
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Modeling the Belgian AIDS data

@ Exponential growth models are reasonable in the early stages
of an epidemic

@ As we remarked back when we first started talking about
GLMs, the simple linear model

n; = Bo + P1Year,

when combined with a log link, is equivalent to fitting the
exponential growth model

Ai = vexp(dt;),

where By = log(v) and 81 = §
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Model fitting and inference

e Fitting these models (as you know from the homework) can
be accomplished via an iteratively reweighted least squares
algorithm, with the reweighting step

e Furthermore (as you also know from the homework), we can
carry out inference according to the Wald approximation

B~N (B, XTWX)™)

@ We can then transform estimates and confidence intervals to
get inference on the A scale, just as we did for logistic
regression
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Poisson regression in SAS/R

@ Fitting these models in SAS and R is straightforward
e In SAS,
PROC GENMOD DATA=aids;
MODEL Cases = Year / DIST=P0I;
RUN;
e InR
glm(Cases"Year, data=aids, family=poisson)
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Likelihood ratio intervals and tests

o Again, the default output is Wald-style inference

@ To obtain likelihood ratio tests and confidence intervals in
SAS, one can add the options LRCI and TYPE3 to the MODEL
statement

@ In R, the confint function again produces likelihood ratio
intervals, while likelihood ratio tests can again be carried out
by fitting the full model (£it) and the reduced model (£it0),
then submitting

anova(fit0, fit, test="Chisq")

Patrick Breheny BST 760: Advanced Regression



Fitting and

Residuals and d

Standard output

The standard R/SAS output is following:

15} SE
Intercept -397.06 15.46
Year 0.20 0.01

What does the intercept mean here?
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Re-centering year at 1981

@ Re-centering year so that it begins at the start of the study
(1981), we obtain a meaningful intercept:

Estimate Std. Error
Intercept 3.34 0.07
Year 0.20 0.01

@ Recall that we are modeling with a log link; the model thus
estimates €334 = 28.2 cases in 1981

@ How to interpret the coefficient for year?
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Rate ratios

o Consider two hypothetical observations with different
explanatory variables x; and xs; the Poisson GLM with log
link implies that

Az _ exp(1p)
A1 exp(m)
= exp((x2 —x1)" B)

@ In particular, if variable j changes by an amount §;, the rate
ratio )\2/)\1 is exp(5jﬂj)

o Rate ratios (RR) are a common way of describing the
coefficients of a Poisson regression model, putting them on a
scale that is more interpretable, analogous to the use of odds
ratios in logistic regression models
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Rate ratios: Examples

@ So, our regression coefficient of 0.20 implies that the rate
ratio is €¥20 = 1.2; the number of AIDS cases in Belgium
increased by 20% each year over the time span 1981-1993

@ Another way of putting it is that €5(020) = 2.7; the number of
AIDS cases increased by 170% every five years

@ Or yet another way of putting it, e3-°(°20) = 2: the number of
AIDS cases doubled every 3.5 years
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Visualizing the model
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Pearson residuals

@ As with logistic regression, there are two commonly used
types of residuals for Poisson regression: Pearson residuals
and deviance residuals

@ Pearson residuals are straightforward:

@ Note that if we call y; the observed quantity and \; the
expected quantity, we have

)

ZT2 _ (Obs — Exp)?
- i Exp

the usual x? test statistic
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Deviance

@ Before we derive the deviance residuals, we need to revise our
definition of deviance

@ Previously, we have taken deviance to mean —2/; a broader
definition is

D= 2(€max - g)’

where lpax is the maximum possible log-likelihood for the
observed data, given the distribution specified by the model

@ Here, deviance may be interpreted as the gap between a
model’s fit to the data and the fit of an ideal model for which
[1; = y; for all observations

@ This detail was not relevant to our earlier uses of deviance, as
for the Bernoulli and normal distributions, ¢, = 0
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Deviance residuals

@ This is not the case for the Poisson distribution, however

@ For the Poisson distribution,

di = s/ 2y log(yi/A0) — (3 — A},

where you may recall that s; was the sign of y; — i

@ Note the advantage of our new deviance definition: it allows
all the y;! terms to cancel out

@ The deviance is D = Y, d?, although if the model has an
intercept, then Y. y; = > . A;, and the deviance simplifies to

D=2 yilog(yi/ M)
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Additional residuals/diagnostics

@ The concepts of leverage, leave-one-out diagnostics, Cook's
distance, and Ag are the same as they were for logistic
regression

@ Recall once again that both types of residuals can be
standardized by dividing by /1 — Hy;

@ Let's take a look at what these diagnostics say about our
Poisson regression fit to the Belgian AIDS data
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Belgian AIDS data: Leverage

Leverage
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Residuals and diagnostics

Belgian AIDS data: Influence

Cook's distance
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Residuals and diagnostics

Belgian AIDS data: A (Year)
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Residuals and diagnostics

Belgian AIDS data: Residuals

20
-2 4

10

d(Studentized deleted)
.

d*(Studentized deleted)
.

—f — — e o °
® T T T T T \’_ 0 T T T T T T

50 100 150 200 250 300 50 100 150 200 250 300

A A

Patrick Breheny Advanced Regression



Fitting and infere!
Residuals and diagnos

Considering a quadratic model

@ All of these plots indicate problems — our model fits the data
from 1992 and 1993 poorly, and this has a fairly large impact

@ A plot of the partial residuals suggests fitting a quadratic
model:
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Measures of predictive power

@ How effective is our model at predicting the outcome?

@ As with logistic regression, two measures are commonly used:
reduction in squared error and deviance explained

@ The reduction in squared error is
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Measures of predictive power

@ Once again, both measures can be adjusted for number of
parameters by dividing the numerator by n — p and the
denominator by n — 1

@ In our example:

R*> R, DE DEy
1981-1993  Linear  0.880 0.869 0.907  0.899
1981-1991  Linear ~ 0.973 0.970 0.964  0.960

1981-1993 Quadratic 0.988 0.986 0.989 0.987
@ AIC also strongly favors a quadratic model (166 vs. 97)

Patrick Breheny BST 760: Advanced Regression



Residuals and diagnostics

Belgian AIDS data: Quadratic model
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Residuals and diagnostics

Belgian AIDS data: Influence for quadratic model
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Residuals and diagnostics

Belgian AIDS data: Az (Year) for quadratic model
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Residuals and diagnostics

Belgian AIDS data: Residuals for quadratic model
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