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Count data

Count data is another common type of data in observational
and epidemiological studies

This type of data naturally arises from studies investigating
the incidence or mortality of diseases in a population

The Poisson distribution is a natural choice to model the
distribution of such data
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Poisson regression

As with the binomial distribution leading to logistic regression,
a simple Poisson model is quite limited

We want to allow each sampling unit (person, county, etc.) to
have a unique rate parameter λi, depending on the
explanatory variables

The random and systematic components are as follows:

Random component: yi ∼ Pois(λi)
Systematic component: ηi = xT

i β
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Poisson regression: Link function

Recall that the canonical link for the Poisson distribution is
the log link

Thus,

log(λi) = ηi

λi = exp(ηi)

Note again that the canonical link ensures that λi > 0, as it
must be for the Poisson distribution
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Belgian AIDS data

As a first example of Poisson regression, consider the following
data on the number of new cases of AIDS in Belgium, 1981–1993:
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Modeling the Belgian AIDS data

Exponential growth models are reasonable in the early stages
of an epidemic

As we remarked back when we first started talking about
GLMs, the simple linear model

ηi = β0 + β1Year,

when combined with a log link, is equivalent to fitting the
exponential growth model

λi = γ exp(δti),

where β0 = log(γ) and β1 = δ
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Model fitting and inference

Fitting these models (as you know from the homework) can
be accomplished via an iteratively reweighted least squares
algorithm, with the reweighting step

w
(m)
i = λ̂

(m)
i

Furthermore (as you also know from the homework), we can
carry out inference according to the Wald approximation

β̂ ∼ N
(
β, (XTWX)−1

)
We can then transform estimates and confidence intervals to
get inference on the λ scale, just as we did for logistic
regression
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Poisson regression in SAS/R

Fitting these models in SAS and R is straightforward

In SAS,

PROC GENMOD DATA=aids;

MODEL Cases = Year / DIST=POI;

RUN;

In R

glm(Cases~Year, data=aids, family=poisson)
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Likelihood ratio intervals and tests

Again, the default output is Wald-style inference

To obtain likelihood ratio tests and confidence intervals in
SAS, one can add the options LRCI and TYPE3 to the MODEL

statement

In R, the confint function again produces likelihood ratio
intervals, while likelihood ratio tests can again be carried out
by fitting the full model (fit) and the reduced model (fit0),
then submitting

anova(fit0, fit, test="Chisq")
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Standard output

The standard R/SAS output is following:

β SE

Intercept -397.06 15.46
Year 0.20 0.01

What does the intercept mean here?
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Re-centering year at 1981

Re-centering year so that it begins at the start of the study
(1981), we obtain a meaningful intercept:

Estimate Std. Error

Intercept 3.34 0.07
Year 0.20 0.01

Recall that we are modeling with a log link; the model thus
estimates e3.34 = 28.2 cases in 1981

How to interpret the coefficient for year?
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Rate ratios

Consider two hypothetical observations with different
explanatory variables x1 and x2; the Poisson GLM with log
link implies that

λ2
λ1

=
exp(η2)

exp(η1)

= exp((x2 − x1)
Tβ)

In particular, if variable j changes by an amount δj , the rate
ratio λ2/λ1 is exp(δjβj)

Rate ratios (RR) are a common way of describing the
coefficients of a Poisson regression model, putting them on a
scale that is more interpretable, analogous to the use of odds
ratios in logistic regression models
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Rate ratios: Examples

So, our regression coefficient of 0.20 implies that the rate
ratio is e0.20 = 1.2; the number of AIDS cases in Belgium
increased by 20% each year over the time span 1981-1993

Another way of putting it is that e5(0.20) = 2.7; the number of
AIDS cases increased by 170% every five years

Or yet another way of putting it, e3.5(0.20) = 2; the number of
AIDS cases doubled every 3.5 years
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Visualizing the model
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Pearson residuals

As with logistic regression, there are two commonly used
types of residuals for Poisson regression: Pearson residuals
and deviance residuals

Pearson residuals are straightforward:

ri =
yi − λ̂i√

λ̂i

Note that if we call yi the observed quantity and λ̂i the
expected quantity, we have∑

i

r2i =
(Obs− Exp)2

Exp
,

the usual χ2 test statistic
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Deviance

Before we derive the deviance residuals, we need to revise our
definition of deviance

Previously, we have taken deviance to mean −2`; a broader
definition is

D = 2(`max − `),

where `max is the maximum possible log-likelihood for the
observed data, given the distribution specified by the model

Here, deviance may be interpreted as the gap between a
model’s fit to the data and the fit of an ideal model for which
µ̂i = yi for all observations

This detail was not relevant to our earlier uses of deviance, as
for the Bernoulli and normal distributions, `max = 0
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Deviance residuals

This is not the case for the Poisson distribution, however

For the Poisson distribution,

di = si

√
2{yi log(yi/λ̂i)− (yi − λ̂i)},

where you may recall that si was the sign of yi − λ̂i
Note the advantage of our new deviance definition: it allows
all the yi! terms to cancel out

The deviance is D =
∑

i d
2
i , although if the model has an

intercept, then
∑

i yi =
∑

i λ̂i, and the deviance simplifies to

D = 2
∑
i

yi log(yi/λ̂i)
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Additional residuals/diagnostics

The concepts of leverage, leave-one-out diagnostics, Cook’s
distance, and ∆β are the same as they were for logistic
regression

Recall once again that both types of residuals can be
standardized by dividing by

√
1−Hii

Let’s take a look at what these diagnostics say about our
Poisson regression fit to the Belgian AIDS data
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Belgian AIDS data: Leverage
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Belgian AIDS data: Influence
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Belgian AIDS data: ∆β (Year)
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Belgian AIDS data: Residuals
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Considering a quadratic model

All of these plots indicate problems – our model fits the data
from 1992 and 1993 poorly, and this has a fairly large impact

A plot of the partial residuals suggests fitting a quadratic
model:
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Measures of predictive power

How effective is our model at predicting the outcome?

As with logistic regression, two measures are commonly used:
reduction in squared error and deviance explained

The reduction in squared error is

R2 = 1−
∑

i(yi − λ̂i)2∑
i(yi − ȳ)2

The explained deviance is

1− D

D0
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Measures of predictive power

Once again, both measures can be adjusted for number of
parameters by dividing the numerator by n− p and the
denominator by n− 1

In our example:

R2 R2
adj DE DEadj

1981–1993 Linear 0.880 0.869 0.907 0.899
1981–1991 Linear 0.973 0.970 0.964 0.960
1981–1993 Quadratic 0.988 0.986 0.989 0.987

AIC also strongly favors a quadratic model (166 vs. 97)
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Belgian AIDS data: Quadratic model
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Belgian AIDS data: Influence for quadratic model
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Belgian AIDS data: ∆β (Year) for quadratic model
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Belgian AIDS data: Residuals for quadratic model
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