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Introduction

Multinomial regression requires the estimation of (K − 1)p
parameters, and assumes nothing about the relationship
between the categories

This is very flexible of course, but has two downsides:

The large number of parameters can be cumbersome to
interpret
Estimating a large number of parameters can result in high
variability in the estimates

When the categories are ordered, making assumptions about
the relationships between them allows us to introduce some
structure and estimate fewer parameters, decreasing variability
and increasing interpretability
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Martin county coal spill

In October 2000, a coal slurry impoundment ruptured,
emptying more than 300 million gallons of toxic coal waste
into the streams of Martin County, Kentucky

Researchers from the sociology department at the University
of Kentucky carried out a study of the disaster’s effect on
trust in the community

In the months following the disaster, and then again 10 years
later, a survey was administered to residents of Martin County
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Martin county study

Among the survey items was the statement, “I have trust in
the local government”; respondents were asked to choose their
reaction to that statement from among the following options:

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Such items are often referred to as being measured on a Likert
scale after their inventor, Rensis Likert

In addition to trust in local government and year (2011 vs.
2001), we will also consider the demographic variable
Education, recorded as Less than high school/High
school/Some college/College degree
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Cumulative logits

Note that, unlike the case with alligator food choices, the
response categories here are ordered, which suggests a certain
relationship between them

It would be odd, for example, if comparing 2011 vs. 2001 we
came to the conclusion that the number of “strongly agree”
and “disagree” responses went up significantly, but that the
number of “agree” and “strongly disagree” responses went
down significantly

To address this ordering, we can focus on the cumulative
logits:

log

(
Pr(Y ≤ k)
Pr(Y > k)

)
= log

(
π1 + · · ·+ πk

πk+1 + · · ·+ πK

)

Patrick Breheny BST 760: Advanced Regression 5/19



Introduction
The proportional odds model

Results

The proportional odds model

The proportional odds model assumes that each explanatory
variable exerts the same effect on each cumulative logit
regardless of the cutoff k:

log

(
Pr(Y ≤ k)
Pr(Y > k)

)
= αk + xTβ

Note that:

Each cumulative logit has its own intercept, but each
explanatory variable only has a single coefficient β; thus, the
model has fewer terms than a multinomial regression model
Writing down the proportional odds model requires us to
modify the notation we’ve used all semester; in the above, x
and β do not include a term for the intercept
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Alternative parameterization

Note that the description of the model given on the previous
slide is perhaps a bit counterintuitive, in that high values of
η = αk + xTβ are associated with low values of Y

For this reason, many people prefer to specify the model as

log

(
Pr(Y ≤ k)
Pr(Y > k)

)
= αk − xTβ,

so that the sign of β has the usual meaning (i.e., if positive,
an increase in x is associated with an increase in Y )

This is the formulation adopted by R; SAS uses the
formulation on the previous slide
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Coefficients and probabilities

Suppose we wish to calculate Pr(Y = k|x) based on our
model

For the simple case where k = 1, the calculations are identical
to logistic regression:

Pr(Y = 1|x) = Pr(Y ≤ 1|x) = exp(α1 + xTβ)

1 + exp(α1 + xTβ)

Calculating the probabilities for other categories requires a bit
more work:

Pr(Y = k|x) = Pr(Y ≤ k|x)− Pr(Y ≤ k − 1|x)
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Coefficients and odds ratios

As with regular logistic regression, a key advantage of the
logit link is that additive models yield constant odds ratios

Consider comparing two arbitrary individuals, with covariates
x2 and x1:

Pr(Y > k|x2)/Pr(Y ≤ k|x2)

Pr(Y > k|x1)/Pr(Y ≤ k|x1)
= −(x2 − x1)

Tβ;

this is for the first (SAS-style) parameterization; for the
second (R-style) parameterization,

Pr(Y > k|x2)/Pr(Y ≤ k|x2)

Pr(Y > k|x1)/Pr(Y ≤ k|x1)
= (x2 − x1)

Tβ
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Remarks

Thus, for the usual case where we consider changing only a
single parameter at a time by one unit, eβ represents the odds
ratio, as usual in logistic regression

The difference, however, is that eβ now represents a
cumulative odds ratio: the odds of “at least k” under two
different conditions

Note that we get exactly the same odds ratio for comparing
{Neutral, Agree, Strongly agree} vs {Disagree, Strongly
disagree} as when comparing {Agree, Strongly agree} vs
{Neutral, Disagree, Strongly disagree}
The odds ratio is constant across each split; hence the name
“proportional odds model”
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Results: Odds ratio

For the model with Year as the only explanatory variable, we
have β̂ = 0.618 and

95% CI
OR Lower Upper p

Year 1.9 1.3 2.6 0.0003

One valid interpretation of this finding would be that the odds
of agreeing with the statement “I trust the local government”
nearly doubled between 2001 and 2011

Or, equally valid, the odds of disagreeing with the statement
fell by nearly half
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Descriptive statistics

Of course, this is something of an oversimplification, in that the
actual increases were not perfectly proportional across all
categories:
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Estimated probabilities

Estimated probability of each response, subject to model
restrictions:

Strongly Strongly
disagree Disagree Neutral Agree agree

2001 0.35 0.38 0.16 0.08 0.02
2011 0.23 0.37 0.22 0.14 0.04

Observed (“raw”) proportions:

Strongly Strongly
disagree Disagree Neutral Agree agree

2001 0.37 0.35 0.16 0.10 0.02
2011 0.20 0.41 0.24 0.10 0.05
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Proportional odds vs. multinomial models

Multinomial regression avoids the proportional odds
assumption, allowing the possibility of capturing
non-proportional trends in the explanatory variables

The downsides, however, are that we don’t simply get an OR
for Year, we have separate ORs for Agree vs. Disagree,
Strongly agree vs. neutral, neutral vs. disagree, etc.

This is a bit cumbersome to interpret; for example, the
estimated agree vs. disagree odds ratio for the multinomial
model is 0.86, suggesting the opposite trend (a decline in
trust over time) from most other comparisons

Patrick Breheny BST 760: Advanced Regression 14/19



Introduction
The proportional odds model

Results

Basic model
Comparison with multinomial regression
Interaction

Variability

Furthermore, the multinomial model estimates have higher
variance

For example, SEβ̂ = 0.17 for the proportional odds model,
SEβ̂ = 0.33 for the multinomial model comparing agree to
disagree

To compare the models, we could use AIC; here, the
proportional odds model has AIC 1312, while the multinomial
model has AIC 1313, indicating that the violation of
proportional odds is not substantial enough to warrant all the
extra parameters that the multinomial model introduces
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Some model selection

Investigating the fit of various models:

AIC

(Intercept) 1324
Year 1312
Year + Educ 1314
Year × Educ 1309

Interestingly, education seems to add very little as an additive
effect, but has a somewhat important interaction with Year

It is worth noting that assuming a linear trend for education
has an even better fit (AIC 1303), but for the sake of
illustration, I’ll continue treating education as a categorical
variable
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Education-specific odds ratios

95% CI
Education OR 2.5 % 97.5 %

(No interaction) 1.9 1.3 2.6
Less than HS 0.9 0.4 1.9

High school 1.7 1.0 3.0
Some college 2.2 1.1 4.3

College degree 8.9 2.8 30.1

Including an interaction reveals that the change in trust over time
was not the same in each demographic group – trust changed very
little among those with less than a high school education and
dramatically for those with a college degree
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Probability estimates

0

10

20

30

40

50

60

P
er

ce
nt

Strongly
disagree Disagree Neutral Agree

Strongly
agree

2001

0

10

20

30

40

50

60

P
er

ce
nt

Strongly
disagree Disagree Neutral Agree

Strongly
agree

2011

Less than HS High School Some college College degree

Patrick Breheny BST 760: Advanced Regression 18/19



Introduction
The proportional odds model

Results

Basic model
Comparison with multinomial regression
Interaction

Summary

Ordinal responses are very common in the medical,
epidemiological, and social sciences; I have been asked to
analyze ordinal data on many occasions

The proportional odds model is a rather elegant (and popular)
way to handle ordinal data, respecting both its ordering as well
as its categorical nature without any substantial increase in
the difficulty of interpretation, as individual coefficients have
odds ratio interpretations very similar to logistic regression

Finally, there is also a rather interesting connection between
the proportional odds model and nonparametric testing: with
a single binary covariate, the (score) test of a proportional
odds model is equivalent to the Wilcoxon rank sum test (see
code for a demonstration)
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