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Introduction

We have used logistic regression to model binary (yes/no)
data

What if we have multiple categories? For example, different
forms of a disease, different types of species, or choices from
among several alternatives?

Today we will discuss the generalization of logistic regression
(which involved a binomial outcome) to multinomial
regression, in which the outcome is multinomial
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Alligator food choice data

To illustrate multinomial regression, we’ll analyze a study of
factors influencing the primary food choice of alligators

The study involved 219 alligators captured in four Florida lake

The outcome variable, Food, is the primary food type, and
consists of five categories:

bird

fish

invert: snails, crayfish, insects, . . .
reptile: turtles, other alligators, . . .
other: amphibians, mammals, plants, . . .
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Alligator food choice data

In addition to the lake in which the alligator was captured, we
also have information pertaining to the alligator’s

Size: Either small (≤ 2.3 meters long) or large (> 2.3
meters long)
Sex

The question of interest is the effect that these factors have
on the primary food type that an alligator chooses to eat
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Notation

We will use the following notation in this lecture and the next to
describe multi-class models:

Let Y be a random variable that can take on one of K
discrete values (i.e., fall into one of K classes)

Number the classes 1, . . . ,K

Let πi2 = Pr(Yi = 2) denotes the probability that the ith
individual’s outcome belongs to the second class

More generally, πik = Pr(Yi = k) denotes the probability that
the ith individual’s outcome belongs to the kth class
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Multinomial distribution

In case you have not seen it before, the multinomial
distribution is defined as follows:

p(Y = y) =
n!

y1! · · · yK !
πy11 · · ·πyKK ,

where
∑

k yk = n and
∑

k πk = 1

Note that for K = 2, this reduces to the binomial distribution

If the data were iid, we could simply fit the multinomial
distribution to our data

However, the purpose of our analysis is to examine the ways
in which factors (which vary from alligator to alligator)
change π; hence the name multinomial regression
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The multinomial logistic regression model

Multinomial logistic regression is essentially equivalent to the
following:

Let k = 1 denote the reference category
Fit separate logistic regression models for k = 2, . . . ,K,
comparing each outcome to the baseline:

log

(
πik
πi1

)
= xT

i βk

Note that this will result in K − 1 vectors of regression
coefficients (we don’t need to estimate the Kth vector
because

∑
k πk = 1)

This is the multinomial regression model, although the
estimation procedure is complicated by the constraint that∑

k πk = 1
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Probabilities and odds ratios

The fitted class probabilities for an observation with explanatory
variable vector x are therefore

π̂1 =
1

1 +
∑

k exp(x
T β̂k)

π̂k =
exp(xT β̂k)

1 +
∑

l exp(x
T β̂l)
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Probabilities and odds ratios

Like logistic regression, odds ratios in the multinomial model
are easily estimated as exponential functions of the regression
coefficients:

ORkl =
πk
πl

=
πk/π1
πl/π1

=
exp

(
(x2 − x1)

Tβk

)
exp ((x2 − x1)Tβl)

= exp
(
(x2 − x1)

T (βk − βl)
)

In the simple case of changing xj by δj and comparing k to
the reference category,

ORkl = exp(δjβkj)
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Some model selection

Model AIC

Null 612
Size 605
Size + Lake 580
Size + Lake + Sex 586
Size × Lake 587

It would seem, therefore, that Size and Lake influence eating
preferences, although there is no evidence of an interaction
between the two, or any meaningful differences in the eating
preferences of male and female gators
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ORs: Size

Odds ratios comparing large vs. small alligators, with invertebrates
as reference group

95% CI
OR Lower Upper p

Bird 8.1 2.1 31.5 0.003
Reptile 6.1 1.9 19.9 0.003
Fish 4.3 2.0 9.3 0.0002
Other 3.1 1.1 8.3 0.03
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ORs: Lake

Odds ratios comparing Lake Trafford vs. Lake George, with fish as
reference group

95% CI
OR Lower Upper p

Reptile 18.8 2.1 167.9 0.009
Other 4.6 1.3 15.4 0.01
Invert 3.1 1.2 8.0 0.02
Bird 3.0 0.6 15.4 0.2
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