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Poisson rates

The meaning of λ often requires additional thought

When we employ a Poisson model, what we are modeling is
the rate of events

We need to be careful about specifying what we are
estimating: a rate per what?

For example, if we are modeling motor vehicle crashes, we
may be estimating a rate per 1,000 population, a rate per
1,000 licensed drivers, a rate per 1,000 registered motor
vehicles, or a rate per 100,000 miles traveled
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British doctor study

A kind of rate that is particularly common in epidemiological
studies is a rate per person-years of follow-up

For example, consider the classic study by Doll et al. in which
all British male doctors were sent a questionnaire about their
age and whether they smoked tobacco

The doctors were then followed up for a number of years to
see whether or not they had died from coronary heart disease
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Offsets

Suppose, then, that we wish to model λ(x), the rate per
1,000 person-years of follow-up, given the explanatory
variables Age and Smoking

Now,

E(Yi) = tiλi,

where ti denotes the person-years of follow-up for
observation i

This implies that

log(µi) = log(ti) + log(λi)

= log(ti) + ηi;

thus, the usual relationship between µi and the linear
predictor is offset by the amount log(ti)
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Including offsets in R/SAS

Both R and SAS allow you to specify an offset

In SAS, one simply adds the option OFFSET= to the model
statement

Similarly, in R, one specifies the offset= option in the glm

function

Note: In SAS, one must compute the offset in a separate
DATA step, while in R, one can submit code such as
offset=log(PersonYears/1000)
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Estimating linear combinations

We can then estimate the rate per 1,000 person-years of
follow-up for any category we choose using either the
ESTIMATE statement in SAS or the predict function in R

For example, with SAS’s default coding of class variables, the
following statement estimates the rate of CHD deaths for
smokers aged 45–54:

ESTIMATE ’45-54 smokers’ Intercept 1

Age 0 1 0 0 0

Smoking 0 1;

In R, we can set up a data frame consisting of all the linear
combinations we are interested in, and then submit

predict(fit,df,type="response")

Note: In SAS, the offset is set to zero; in R, you specify the
offset variable
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Estimated rates

The estimated rates from our Poisson regression model:

Smokers Non-smokers

35–44 0.52 0.36
45–54 2.29 1.60
55–64 7.17 5.03
65–74 14.78 10.37
75–84 20.97 14.71

Note that, by fitting a model with no interaction between age
and smoking, we enforce that the rate ratio (RR) between
smokers and non-smokers are the same in each age group
(0.52/0.36 = · · · = 20.97/14.71 = 1.43)
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Interaction

If we allow an interaction, we obtain

Smokers Non-smokers RR

35–44 0.61 0.11 5.5
45–54 2.40 1.12 2.1
55–64 7.20 4.90 1.5
65–74 14.69 10.83 1.4
75–84 19.18 21.20 0.9

Poisson regression is an adequate tool for analyzing cohort
studies; however, if one has detailed individual-level data, one
can apply the more sophisticated approaches that have been
developed in the field of survival analysis
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Quasi-likelihood
Negative binomial

Overdispersion

One of the defining characteristics of Poisson regression is its
lack of a scale parameter: E(Y ) = Var(Y ), and no parameter
is available to adjust that relationship

In practice, when working with Poisson regression, it is often
the case that the variability of yi about λ̂i is larger than what
λ̂i predicts

This implies that there is more variability around the model’s
fitted values than is consistent with the Poisson distribution

Patrick Breheny BST 760: Advanced Regression 9/23



Offsets
Overdispersion
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Overdispersion (cont’d)

The term for this phenomenon is overdispersion

Data for which this phenomenon manifests itself are often
called “overdispersed”, although as we will see, it is perhaps
better to refer to the model as overdispersed, not the data

There are two common approaches to correcting for
overdispersion:

Quasi-likelihood
Negative binomial regression

Patrick Breheny BST 760: Advanced Regression 10/23



Offsets
Overdispersion

Quasi-likelihood
Negative binomial

Tinkering with the score

Recall that the score arising from a Poisson regression model is

∂`

∂θ
=
∑
i

{yi − λ̂i}

where θ = log(λ), the canonical parameter

Note, of course, that there is no scale parameter, which would
show up in the denominator on the right hand side

Now suppose we add one:

∂`

∂θ
=
∑
i

yi − λ̂i
φ
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Quasi-likelihood
Negative binomial

Implications of our tinkering

Recall that Var(Y ) = φV (µ); thus, we now have a parameter
that allows the variance to be larger or smaller than the mean
by a multiplicative factor φ

This will not change β̂, of course

However, it will affect inference, since

β̂
.∼ N

(
β, φ(XTWX)−1

)

Patrick Breheny BST 760: Advanced Regression 12/23



Offsets
Overdispersion

Quasi-likelihood
Negative binomial

Quasi-likelihood

So what distribution is this, that gives rise to this score?

There isn’t one (at least, not one for which you can write
down the distribution in closed form)

This approach, where you modify the score directly and never
actually specify a distribution, is known as quasi-likelihood
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Quasi-likelihood
Negative binomial

Quasi-likelihood: Estimation of scale

Typically, the scale parameter φ is estimated using the
method of moments estimator

φ̂ =
X2

n− p

To use this approach in R, one can specify
family=quasipoisson; in SAS, one can add a PSCALE

option to the model statement
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Quasi-likelihood
Negative binomial

Quasi-likelihood: Belgian AIDS data

For our Belgian AIDS data, φ̂ = 6.7, implying that the
variance was nearly 7 times larger than that implied by the
Poisson distribution

Again, the fit is the same

However, our standard errors are
√
6.7 ≈ 2.6 times larger
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Quasi-likelihood: Belgian AIDS data (cont’d)
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Quasi-likelihood
Negative binomial

Drawbacks of quasi-likelihood

The quasi-Poisson approach is attractive for several reasons,
but its big drawback is that lacks a log-likelihood

This prevents you from using any of the likelihood-based tools
we have discussed for GLMs: likelihood ratio tests, AIC/BIC,
deviance explained, deviance residuals

An alternative approach that allows all those maximum
likelihood tools is based on the negative binomial distribution
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Quasi-likelihood
Negative binomial

The negative binomial distribution

The negative binomial distribution has other uses in
probability and statistics, but for our purposes we can think
about it as arising from a two-stage hierarchical process:

Z ∼ Gamma(θ, θ)

Y |Z ∼ Poisson(λZ)

The marginal distribution of Y is then negative binomial, with

E(Y ) = λ

Var(Y ) = λ+ λ2/θ

Thus, like the Poisson distribution, the negative binomial has
support only on the positive integers, but unlike the Poisson,
its variance is larger than its mean
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Negative binomial and exponential family

Note, however, that the negative binomial distribution is not a
member of the exponential family

Thus, the theory and fitting procedures we have developed for
GLMs do not directly apply here

For example, there is no “canonical link”; however, it is
customary to employ a log link to make negative binomial
regression look like Poisson regression

Regardless, PROC GENMOD in SAS allows the choice of
DIST=NB for negative binomial models; in R, one must use the
glm.nb function in the MASS package
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Negative binomial

Negative binomial: Mean-variance relationship

For the Belgian AIDS data, θ̂ = 19.2, implying the following
mean-variance relationship:
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Quasi-likelihood
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Negative binomial: Estimate

This leads to the following:
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Quasi-likelihood
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Remarks

Arguably, the negative binomial estimates are even worse than
the Poisson estimates, and certainly drastically worse than the
quadratic Poisson model

However, its “goodness of fit” measures are much better

This is why I remarked earlier that it’s wrong to think of the
data as overdispersed – if the data show more variability than
the model can explain, the most likely explanation is a bad
model

The quadratic Poisson fit shows no overdispersion (the
residuals are actually slightly “underdispersed”)
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Remarks (cont’d)

Accounting for overdispersion is a good idea – if the model
doesn’t fit the data, this should be reflected with larger
standard errors and wider confidence intervals

However, many analysts have the view that quasi-Poisson or
negative binomial regression automatically “fixes” the
overdispersion problem

This is a potentially dangerous misconception – surely,
accurately modeling the mean is of greater priority than
modeling the variance

While quasi-Poisson and negative binomial approaches are
useful, they are certainly no substitute for careful
consideration of the systematic component of the model
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