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Offsets

Poisson rates

@ The meaning of A\ often requires additional thought

@ When we employ a Poisson model, what we are modeling is
the rate of events

@ We need to be careful about specifying what we are
estimating: a rate per what?

@ For example, if we are modeling motor vehicle crashes, we
may be estimating a rate per 1,000 population, a rate per
1,000 licensed drivers, a rate per 1,000 registered motor
vehicles, or a rate per 100,000 miles traveled
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British doctor study

@ A kind of rate that is particularly common in epidemiological
studies is a rate per person-years of follow-up

@ For example, consider the classic study by Doll et al. in which
all British male doctors were sent a questionnaire about their
age and whether they smoked tobacco

@ The doctors were then followed up for a number of years to
see whether or not they had died from coronary heart disease
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Offsets

@ Suppose, then, that we wish to model A(x), the rate per
1,000 person-years of follow-up, given the explanatory
variables Age and Smoking

o Now,

where t; denotes the person-years of follow-up for
observation i

@ This implies that
log(i) = log(ti) + log(A:)
= log(t;) + mi;

thus, the usual relationship between p; and the linear
predictor is offset by the amount log(t;)
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Including offsets in R/SAS

@ Both R and SAS allow you to specify an offset

@ In SAS, one simply adds the option OFFSET= to the model
statement

@ Similarly, in R, one specifies the offset= option in the glm
function

@ Note: In SAS, one must compute the offset in a separate

DATA step, while in R, one can submit code such as
offset=log(PersonYears/1000)
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@ We can then estimate the rate per 1,000 person-years of
follow-up for any category we choose using either the
ESTIMATE statement in SAS or the predict function in R

For example, with SAS'’s default coding of class variables, the
following statement estimates the rate of CHD deaths for
smokers aged 45-54:

ESTIMATE ’45-54 smokers’ Intercept 1

Age 01000

Smoking 0 1;
In R, we can set up a data frame consisting of all the linear
combinations we are interested in, and then submit
predict(fit,df,type="response")
Note: In SAS, the offset is set to zero; in R, you specify the
offset variable
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Estimated rates

@ The estimated rates from our Poisson regression model:
Smokers Non-smokers

35-44 0.52 0.36
45-54 2.29 1.60
55-64 7.17 5.03
65-74 14.78 10.37
75-84 20.97 14.71

@ Note that, by fitting a model with no interaction between age
and smoking, we enforce that the rate ratio (RR) between
smokers and non-smokers are the same in each age group
(0.52/0.36 = - -- = 20.97/14.71 = 1.43)
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Interaction

@ If we allow an interaction, we obtain

Smokers Non-smokers RR

35-44 0.61 0.11 5.5
45-54 2.40 112 21
55-64 7.20 490 15
65—74 14.69 10.83 1.4
75-84 19.18 21.20 0.9

@ Poisson regression is an adequate tool for analyzing cohort
studies; however, if one has detailed individual-level data, one
can apply the more sophisticated approaches that have been
developed in the field of survival analysis
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Overdispersion

@ One of the defining characteristics of Poisson regression is its
lack of a scale parameter: E(Y) = Var(Y'), and no parameter
is available to adjust that relationship

@ In practice, when working with Poisson regression, it is often
the case that the variability of y; about \; is larger than what
A; predicts

@ This implies that there is more variability around the model's
fitted values than is consistent with the Poisson distribution
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Overdispersion (cont'd)

@ The term for this phenomenon is overdispersion

@ Data for which this phenomenon manifests itself are often
called “overdispersed”, although as we will see, it is perhaps
better to refer to the model as overdispersed, not the data

@ There are two common approaches to correcting for
overdispersion:

e Quasi-likelihood
o Negative binomial regression
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Tinkering with the score

@ Recall that the score arising from a Poisson regression model is
ol .
90 Z{yz —Ai}
i

where 6 = log(\), the canonical parameter

@ Note, of course, that there is no scale parameter, which would
show up in the denominator on the right hand side

@ Now suppose we add one:

or Yi — \i
%_zi: P
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Implications of our tinkering

@ Recall that Var(Y) = ¢V (u); thus, we now have a parameter
that allows the variance to be larger or smaller than the mean
by a multiplicative factor ¢

@ This will not change ,@ of course

@ However, it will affect inference, since

B~ N (8, 0(XTWX)™)
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Quasi-likelihood

@ So what distribution is this, that gives rise to this score?

@ There isn't one (at least, not one for which you can write
down the distribution in closed form)

@ This approach, where you modify the score directly and never
actually specify a distribution, is known as quasi-likelihood
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Quasi-likelihood: Estimation of scale

@ Typically, the scale parameter ¢ is estimated using the
method of moments estimator

X2
n—p

(Z/S:

@ To use this approach in R, one can specify
family=quasipoisson; in SAS, one can add a PSCALE
option to the model statement
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Quasi-likelihood: Belgian AIDS data

@ For our Belgian AIDS data, gfgz 6.7, implying that the
variance was nearly 7 times larger than that implied by the
Poisson distribution

@ Again, the fit is the same

@ However, our standard errors are v/6.7 =~ 2.6 times larger
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Quasi-likelihood: Belgian AIDS data (cont'd)

350 350

300 300

250 250

& 200 & 200
@ 3

O 150 O 150

100 — 100

50 50 —

0 0

T T T T T I T T T T T I
1982 1986 1990 1982 1986 1990
Year Year

Patrick Breheny Advanced Regression



Offsets Quasi-likelihood
Overdispersion Negative binomial

Drawbacks of quasi-likelihood

@ The quasi-Poisson approach is attractive for several reasons,
but its big drawback is that lacks a log-likelihood

@ This prevents you from using any of the likelihood-based tools
we have discussed for GLMs: likelihood ratio tests, AIC/BIC,
deviance explained, deviance residuals

@ An alternative approach that allows all those maximum
likelihood tools is based on the negative binomial distribution
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The negative binomial distribution

@ The negative binomial distribution has other uses in
probability and statistics, but for our purposes we can think
about it as arising from a two-stage hierarchical process:

Z ~ Gamma(6, 6)
Y|Z ~ Poisson(\Z)

@ The marginal distribution of Y is then negative binomial, with

EY)=A\
Var(Y) = A+ \2/6
@ Thus, like the Poisson distribution, the negative binomial has

support only on the positive integers, but unlike the Poisson,
its variance is larger than its mean
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Negative binomial and exponential family

@ Note, however, that the negative binomial distribution is not a
member of the exponential family

@ Thus, the theory and fitting procedures we have developed for
GLMs do not directly apply here

@ For example, there is no “canonical link”; however, it is
customary to employ a log link to make negative binomial
regression look like Poisson regression

@ Regardless, PROC GENMOD in SAS allows the choice of

DIST=NB for negative binomial models; in R, one must use the
glm.nb function in the MASS package
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Negative binomial: Mean-variance relationship

For the Belgian AIDS data, 6 =19.2, implying the following
mean-variance relationship:
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Negative binomial: Estimate

This leads to the following:
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@ Arguably, the negative binomial estimates are even worse than
the Poisson estimates, and certainly drastically worse than the
quadratic Poisson model

@ However, its “goodness of fit" measures are much better

@ This is why | remarked earlier that it's wrong to think of the
data as overdispersed — if the data show more variability than
the model can explain, the most likely explanation is a bad
model

@ The quadratic Poisson fit shows no overdispersion (the
residuals are actually slightly “underdispersed”)
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Remarks (cont'd)

@ Accounting for overdispersion is a good idea — if the model
doesn't fit the data, this should be reflected with larger
standard errors and wider confidence intervals

@ However, many analysts have the view that quasi-Poisson or
negative binomial regression automatically “fixes” the
overdispersion problem

@ This is a potentially dangerous misconception — surely,
accurately modeling the mean is of greater priority than
modeling the variance

@ While quasi-Poisson and negative binomial approaches are
useful, they are certainly no substitute for careful
consideration of the systematic component of the model
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