Model comparison

Patrick Breheny

March 28

Wells in Bangladesh

- In this lecture and the next, we will consider a data set involving modeling the decisions of households in Bangladesh about whether to change their source of drinking water¹
- Many of the wells used for drinking water in Bangladesh and other South Asian are contaminated with naturally occurring arsenic, affecting an estimated 100 million people
- Arsenic is a cumulative poison, with risks of cancer and other diseases thought to be proportional to exposure

¹This data set comes from Gelman & Hill (2007), "Data Analysis Using Regression and Multilevel/Hierarchical Models"

Switching

- A research team from the United States and Bangladesh measured arsenic levels for all wells in a certain area, labeled the well with its arsenic level, and encouraged households drinking from unsafe wells (> $0.5\mu g/L$) to switch to a safer well
- A few years later, the researchers returned to find out who had switched wells Switch=1 and who had not Switch=0
- The file wells.txt contains information on well switching for 3,020 households

Explanatory variables

We consider the following explanatory variables:

- Arsenic: The arsenic level of the household's well
- Dist: The distance to the nearest safe well
- Community: Whether any members of the household are active in community organizations
- Education: Years of education of the head of the household

R^2 for logistic regression?

- In linear regression, R^2 is a very useful quantity, describing the fraction of the variability in the response that the explanatory variables can explain
- There are a number of ways one can define an analog to R^2 in the logistic regression case, but none of them are as widely useful as R^2 in linear regression

Correlation approach

- One approach is to compute the correlation r between the observed outcomes $\{y_i\}$ and the fitted values $\{\hat{\pi}_i\}$
- In linear regression, the square of this correlation is R^2
- Thus, one reasonable way to define an R^2 for logistic regression is to square r, the Pearson correlation between the observed and fitted values

Squared error approach

• Another approach is to measure the reduction in squared error:

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{\pi}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

• This approach has the advantage that it looks exactly like R^2 for linear regression, and we can therefore easily adjust for the number of parameters:

$$R_{\rm adj}^2 = 1 - \frac{\sum_i (y_i - \hat{\pi}_i)^2 / (n - p)}{\sum_i (y_i - \bar{y})^2 / (n - 1)}$$

A closer look at squared error assumptions

- These two preceding measures have the advantage of working on the scale of the original variable and being easy to interpret
- However, one might question the logic of treating all $(y_i \hat{\pi}_i)$ differences equally
- Compare $\hat{\pi}_i = .9$ with $\hat{\pi}_i = .99$ for an observation with $y_i = 0$
- The squared differences are similar $(0.99^2 = 0.9801, 0.9^2 = 0.81)$ despite the fact that $\Pr(y_i = 0)$ differs by a factor of 10 for the two models

 R^2 -type measures Classification measures

Deviance vs. squared error

- This is the rationale behind considering differences on the likelihood scale (*i.e.*, instead of looking at the reduction in squared error, we look at the reduction in deviance)
- In our example, the contribution to the deviance by the two estimates are

 $-2\log(.1) = 4.6$ $-2\log(.01) = 9.2,$

a two-fold difference, as opposed to the 20% difference as measured by squared error

Explained deviance

• Letting D_0 denote the null deviance (*i.e.*, the deviance of the intercept-only, or simple binomial, model), another attempt at an R^2 -like measure is

$$\frac{D_0 - D}{D_0} = 1 - \frac{D}{D_0},$$

the *explained deviance* (often reported as a percentage)

• Because deviance roughly follows a χ^2_{n-p} distribution, it can also be adjusted for number of parameters:

$$1 - \frac{D/(n-p)}{D_0/(n-1)}$$

Other approaches

- Other approaches involve looking at all pairs for which $\hat{\pi}_i > \hat{\pi}_j$ and recording whether or not y_i and y_j differ
- If y_i = 1 and y_j = 0, then our model gets a point; if y_i = 0 and y_j = 1, then our model loses a point (nothing happens if y_i and y_j are the same)
- This is the idea behind Kendall's $\tau,$ Somer's D, and Goodman and Kruskal's γ
- There are several other approaches too, so almost a dozen altogether (thankfully, they all have the property that they lie between 0 and 1, with 1 being the best)

Well-switching example

To get a sense of how these measures look, let's compare three models:

 $\begin{array}{ll} \mbox{Model 1:} & \eta = \beta_0 + \beta_1 \mbox{Distance} \\ \mbox{Model 2:} & \eta = \beta_0 + \beta_1 \mbox{Distance} + \beta_2 \mbox{Arsenic} \\ \mbox{Model 3:} & \eta = \beta_0 + \mbox{all explanatory variables} \\ \end{array}$

 R^2 -type measures Classification measures

Well-switching example (cont'd)

		Model	
	1	2	3
r^2	0.014	0.062	0.068
R^2	0.014	0.061	0.068
$R^2_{\rm adj}$	0.014	0.061	0.066
$D\check{E}$	0.010	0.046	0.051
$DE_{\rm adj}$	0.010	0.045	0.050
au	0.050	0.142	0.146
γ	0.104	0.293	0.299
Somer's D	0.103	0.291	0.298

Low values for ${\cal R}^2$ and deviance explained are fairly common in health behavior studies such as this one

Classification

- An alternative way of thinking about how well a model fits the data is with respect to *classification*
- This approach forces the model to predict whether $y_i=0$ or $y_i=1$ based on $\hat{\pi}_i$
- The obvious approach is to predict $y_i = 1$ if $\hat{\pi}_i > 0.5$, although other cutoffs could be used if, for example, the cost of false positive is larger than the cost of a false negative (or vice versa)

Classification table

For example, let's compare Models 1 and 3:

M	lodel 1		_	Mo	odel 3	
	No	Yes			No	Yes
$\hat{\pi}_i < 0.5$	194	133	- –	$\hat{\pi}_i < 0.5$	470	346
$\hat{\pi}_i \ge 0.5$	1089	1604		$\hat{\pi}_i \ge 0.5$	813	1391

Note that we have 1,222 incorrect predictions on the left, and 1,159 on the right

ROC Curves

- However, we can consider varying the cutoff to which $\hat{\pi}_i$ is compared
- As we do so, we will change both the false positive rate:

$$\Pr(\hat{y}=1|y=0)$$

and the true positive rate:

$$\Pr(\hat{y} = 1 | y = 1)$$

- The true positive rate is also called the *sensitivity* and 1 minus the false positive rate is also called the *specificity*
- As we vary the cutoff from 0 to 1, plotting these two quantities will create a curve known as the *receiver operating characteristic* (ROC) curve

 R^2 -type measures Classification measures

ROC curves for well-switching data

False positive rate

Patrick Breheny BS

 R^2 -type measures Classification measures

AUC

- For the three models on the previous slide, no matter what the false positive rate, models 2 and 3 had higher true positive rates than model 1
- However, comparing models 2 and 3, either model could be "on top" depending on where we are at on the curve
- A useful summary of the overall quality of the curve is the area under the curve, or AUC (SAS refers to this as "c"; it is located next to γ, τ, and D in the "Association of predicted probabilities..." table):

	Model 1	Model 2	Model 3
AUC	0.55	0.65	0.65

Note that random guessing would yield an AUC of 0.5; perfect classification would yield an AUC of 1 $\,$

Basic principles of model selection

Let's remind ourselves of the basic principles of model selection that we discussed at the beginning of the course:

- Simple models have low variance, but risk bias
- More complicated models reduce bias and fit the sample data better, but can be highly variable and do not necessarily generalize to the population better
- Model selection criteria can be informative, but should not be applied blindly – there is no substitute for thinking carefully about the scientific meaning and plausibility of the models under consideration

• Consider the expected prediction accuracy of a model using log-likelihood as a measure of accuracy:

$$\mathbf{E}\sum_{i}\log \mathrm{Pr}_{\hat{\theta}}(Y_{i}),$$

where $\hat{\theta}$ is the MLE of the parameters of the distribution function for y and the $\{Y_i\}$ are out-of-sample random variables (*i.e.*, not the $\{y_i\}$ used to fit the model)

Akaike showed that

$$-2\mathbf{E}\sum_{i}\log \Pr_{\hat{\theta}}(Y_{i}) \approx -2\mathbf{E}(\operatorname{loglik}) + 2p,$$

where loglik is the log-likelihood of the fitted model

AIC: Interpretation

• This suggests the following criterion, named the *Akaike information criterion*:

$$AIC = -2loglik + 2p = D + 2p$$

- Certainly, a lower AIC is better than a higher AIC (we wouldn't want our expected deviance to be large), but suppose the AIC values for two models differ by, say, 1; is that a meaningful difference?
- A useful rough guide is that AIC differences under 2 are not particularly meaningful, AIC differences of around 5 are fairly convincing, and AIC differences over 10 provide clear support for the model with the lower AIC

- Another common information model selection criterion for GLMs is called the *Bayesian information criterion*, or BIC
- As you might guess, its derivation is Bayesian and beyond the scope of this course
- However, its form happens to be very similar to AIC:

$$BIC = -2loglik + p log(n) = D + p log(n)$$

 Note that because log(n) is bigger than 2 (unless n < 8), BIC penalizes model complexity more heavily than AIC, and thus tends to favor more parsimonious models

BIC: Interpretation

BIC has a direct Bayesian interpretation in that it allows you to calculate (approximately, given equal prior probability on each model) the posterior probability of each model under consideration:

$$P(M_j|\mathbf{y}) \approx \frac{\exp(-0.5\mathrm{BIC}_j)}{\sum_k \exp(-0.5\mathrm{BIC}_k)},$$

where the sum is over the models under consideration

Applying AIC and BIC to our three models from earlier:

	Model		
	1	2	3
AIC	4080	3937	3918
BIC	4092	3955	3948
$P(M_j \mathbf{y})$	0.00	0.03	0.97

Both approaches agree that the most complex model is the best despite its extra parameters, although BIC is less enthusiastic about the difference between models 2 and 3

- It is important to keep in mind the famous words of George Box: All models are wrong, but some are useful.
- Certainly, a useful model should fit the data well, and information criteria are helpful guides here, but other considerations, such as interpretability and scientific justification are also important
- We will continue to look at the well-switching data next time, applying a mix of both statistical and extra-statistical considerations