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Wells in Bangladesh

In this lecture and the next, we will consider a data set
involving modeling the decisions of households in Bangladesh
about whether to change their source of drinking water1

Many of the wells used for drinking water in Bangladesh and
other South Asian are contaminated with naturally occurring
arsenic, affecting an estimated 100 million people

Arsenic is a cumulative poison, with risks of cancer and other
diseases thought to be proportional to exposure

1This data set comes from Gelman & Hill (2007), “Data Analysis Using
Regression and Multilevel/Hierarchical Models”
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Switching

A research team from the United States and Bangladesh
measured arsenic levels for all wells in a certain area, labeled
the well with its arsenic level, and encouraged households
drinking from unsafe wells (> 0.5µg/L) to switch to a safer
well

A few years later, the researchers returned to find out who
had switched wells Switch=1 and who had not Switch=0

The file wells.txt contains information on well switching for
3,020 households

Patrick Breheny BST 760: Advanced Regression 3/25



Introduction
Measures of predictive power

Model selection

Explanatory variables

We consider the following explanatory variables:

Arsenic: The arsenic level of the household’s well

Dist: The distance to the nearest safe well

Community: Whether any members of the household are
active in community organizations

Education: Years of education of the head of the household
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R2 for logistic regression?

In linear regression, R2 is a very useful quantity, describing the
fraction of the variability in the response that the explanatory
variables can explain

There are a number of ways one can define an analog to R2 in
the logistic regression case, but none of them are as widely
useful as R2 in linear regression
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Correlation approach

One approach is to compute the correlation r between the
observed outcomes {yi} and the fitted values {π̂i}
In linear regression, the square of this correlation is R2

Thus, one reasonable way to define an R2 for logistic
regression is to square r, the Pearson correlation between the
observed and fitted values
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Squared error approach

Another approach is to measure the reduction in squared error:

R2 = 1−
∑

i(yi − π̂i)2∑
i(yi − ȳ)2

This approach has the advantage that it looks exactly like R2

for linear regression, and we can therefore easily adjust for the
number of parameters:

R2
adj = 1−

∑
i(yi − π̂i)2/(n− p)∑
i(yi − ȳ)2/(n− 1)
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A closer look at squared error assumptions

These two preceding measures have the advantage of working
on the scale of the original variable and being easy to interpret

However, one might question the logic of treating all (yi − π̂i)
differences equally

Compare π̂i = .9 with π̂i = .99 for an observation with yi = 0

The squared differences are similar (0.992 = 0.9801,
0.92 = 0.81) despite the fact that Pr(yi = 0) differs by a
factor of 10 for the two models
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Deviance vs. squared error

This is the rationale behind considering differences on the
likelihood scale (i.e., instead of looking at the reduction in
squared error, we look at the reduction in deviance)

In our example, the contribution to the deviance by the two
estimates are

−2 log(.1) = 4.6

−2 log(.01) = 9.2,

a two-fold difference, as opposed to the 20% difference as
measured by squared error
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Explained deviance

Letting D0 denote the null deviance (i.e., the deviance of the
intercept-only, or simple binomial, model), another attempt at
an R2-like measure is

D0 −D
D0

= 1− D

D0
,

the explained deviance (often reported as a percentage)

Because deviance roughly follows a χ2
n−p distribution, it can

also be adjusted for number of parameters:

1− D/(n− p)
D0/(n− 1)
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Other approaches

Other approaches involve looking at all pairs for which
π̂i > π̂j and recording whether or not yi and yj differ

If yi = 1 and yj = 0, then our model gets a point; if yi = 0
and yj = 1, then our model loses a point (nothing happens if
yi and yj are the same)

This is the idea behind Kendall’s τ , Somer’s D, and Goodman
and Kruskal’s γ

There are several other approaches too, so almost a dozen
altogether (thankfully, they all have the property that they lie
between 0 and 1, with 1 being the best)
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Well-switching example

To get a sense of how these measures look, let’s compare three
models:

Model 1: η = β0 + β1Distance

Model 2: η = β0 + β1Distance + β2Arsenic

Model 3: η = β0 + all explanatory variables
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Well-switching example (cont’d)

Model
1 2 3

r2 0.014 0.062 0.068
R2 0.014 0.061 0.068
R2

adj 0.014 0.061 0.066

DE 0.010 0.046 0.051
DEadj 0.010 0.045 0.050
τ 0.050 0.142 0.146
γ 0.104 0.293 0.299
Somer’s D 0.103 0.291 0.298

Low values for R2 and deviance explained are fairly common in
health behavior studies such as this one
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Classification

An alternative way of thinking about how well a model fits the
data is with respect to classification

This approach forces the model to predict whether yi = 0 or
yi = 1 based on π̂i

The obvious approach is to predict yi = 1 if π̂i > 0.5,
although other cutoffs could be used if, for example, the cost
of false positive is larger than the cost of a false negative (or
vice versa)
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Classification table

For example, let’s compare Models 1 and 3:

Model 1
No Yes

π̂i < 0.5 194 133
π̂i ≥ 0.5 1089 1604

Model 3
No Yes

π̂i < 0.5 470 346
π̂i ≥ 0.5 813 1391

Note that we have 1,222 incorrect predictions on the left, and
1,159 on the right

Patrick Breheny BST 760: Advanced Regression 15/25



Introduction
Measures of predictive power

Model selection

R2-type measures
Classification measures

ROC Curves

However, we can consider varying the cutoff to which π̂i is
compared

As we do so, we will change both the false positive rate:

Pr(ŷ = 1|y = 0)

and the true positive rate:

Pr(ŷ = 1|y = 1)

The true positive rate is also called the sensitivity and 1 minus
the false positive rate is also called the specificity

As we vary the cutoff from 0 to 1, plotting these two
quantities will create a curve known as the receiver operating
characteristic (ROC) curve
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ROC curves for well-switching data
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AUC

For the three models on the previous slide, no matter what
the false positive rate, models 2 and 3 had higher true positive
rates than model 1

However, comparing models 2 and 3, either model could be
“on top” depending on where we are at on the curve

A useful summary of the overall quality of the curve is the
area under the curve, or AUC (SAS refers to this as “c”; it is
located next to γ, τ , and D in the “Association of predicted
probabilities. . . ” table):

Model 1 Model 2 Model 3

AUC 0.55 0.65 0.65

Note that random guessing would yield an AUC of 0.5; perfect
classification would yield an AUC of 1
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Basic principles of model selection

Let’s remind ourselves of the basic principles of model selection
that we discussed at the beginning of the course:

Simple models have low variance, but risk bias

More complicated models reduce bias and fit the sample data
better, but can be highly variable and do not necessarily
generalize to the population better

Model selection criteria can be informative, but should not be
applied blindly – there is no substitute for thinking carefully
about the scientific meaning and plausibility of the models
under consideration
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Consider the expected prediction accuracy of a model using
log-likelihood as a measure of accuracy:

E
∑
i

log Prθ̂(Yi),

where θ̂ is the MLE of the parameters of the distribution
function for y and the {Yi} are out-of-sample random
variables (i.e., not the {yi} used to fit the model)

Akaike showed that

−2E
∑
i

log Prθ̂(Yi) ≈ −2E(loglik) + 2p,

where loglik is the log-likelihood of the fitted model
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This suggests the following criterion, named the Akaike
information criterion:

AIC = −2loglik + 2p = D + 2p

Certainly, a lower AIC is better than a higher AIC (we
wouldn’t want our expected deviance to be large), but
suppose the AIC values for two models differ by, say, 1; is that
a meaningful difference?

A useful rough guide is that AIC differences under 2 are not
particularly meaningful, AIC differences of around 5 are fairly
convincing, and AIC differences over 10 provide clear support
for the model with the lower AIC
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BIC

Another common information model selection criterion for
GLMs is called the Bayesian information criterion, or BIC

As you might guess, its derivation is Bayesian and beyond the
scope of this course

However, its form happens to be very similar to AIC:

BIC = −2loglik + p log(n) = D + p log(n)

Note that because log(n) is bigger than 2 (unless n < 8),
BIC penalizes model complexity more heavily than AIC, and
thus tends to favor more parsimonious models
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BIC: Interpretation

BIC has a direct Bayesian interpretation in that it allows you to
calculate (approximately, given equal prior probability on each
model) the posterior probability of each model under consideration:

P (Mj |y) ≈ exp(−0.5BICj)∑
k exp(−0.5BICk)

,

where the sum is over the models under consideration
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AIC and BIC

Applying AIC and BIC to our three models from earlier:

Model
1 2 3

AIC 4080 3937 3918
BIC 4092 3955 3948
P (Mj |y) 0.00 0.03 0.97

Both approaches agree that the most complex model is the best
despite its extra parameters, although BIC is less enthusiastic
about the difference between models 2 and 3
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Summary

It is important to keep in mind the famous words of George Box:

All models are wrong, but some are useful.

Certainly, a useful model should fit the data well, and
information criteria are helpful guides here, but other
considerations, such as interpretability and scientific
justification are also important

We will continue to look at the well-switching data next time,
applying a mix of both statistical and extra-statistical
considerations
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