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Introduction

After a model has been fit, it is wise to check the model to
see how well it fits the data

In linear regression, these diagnostics were build around
residuals and the residual sum of squares

In logistic regression (and all generalized linear models), there
are a few different kinds of residuals (and thus, different
equivalents to the residual sum of squares)
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“The” χ2 test

Before moving on, it is worth noting that both SAS and R

report by default a χ2 test associated with the entire model

This is a likelihood ratio test of the model compared to the
intercept-only (null) model, similar to the “overall F test” in
linear regression

This test is sometimes used to justify the model

However, this is a mistake
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“The” χ2 test (cont’d)

Just like all model-based inference, the likelihood ratio test is
justified under the assumption that the model holds

Thus, the F test takes the model as given and cannot
possibly be a test of the validity of the model

The only thing one can conclude from a significant overall χ2

test is that, if the model is true, some of its coefficients are
nonzero (is this helpful?)

Addressing the validity and stability of a model is much more
complicated and nuanced than a simple test, and it is here
that we now turn our attention
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Pearson residuals

The first kind is called the Pearson residual, and is based on
the idea of subtracting off the mean and dividing by the
standard deviation

For a logistic regression model,

ri =
yi − π̂i√
π̂i(1− π̂i)

Note that if we replace π̂i with πi, then ri has mean 0 and
variance 1
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Deviance residuals

The other approach is based on the contribution of each point
to the likelihood

For logistic regression,

` =
∑
i

{yi log π̂i + (1− yi) log(1− π̂i)}

By analogy with linear regression, the terms should correspond
to −1

2r
2
i ; this suggests the following residual, called the

deviance residual:

di = si
√
−2 {yi log π̂i + (1− yi) log(1− π̂i)},

where si = 1 if yi = 1 and si = −1 if yi = 0
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Deviance and Pearson’s statistic

Each of these types of residuals can be squared and added
together to create an RSS-like statistic

Combining the deviance residuals produces the deviance:

D =
∑

d2i

which is, in other words, −2`

Combining the Pearson residuals produces the Pearson
statistic:

X2 =
∑

r2i
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Goodness of fit tests

In principle, both statistics could be compared to the χ2
n−p

distribution as a rough goodness of fit test

However, this test does not actually work very well

Several modifications have been proposed, including an early
test proposed by Hosmer and Lemeshow that remains popular
and is available in SAS

Other, better tests have been proposed as well (an extensive
comparison was made by Hosmer et al. (1997))
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The hat matrix for GLMs

As you may recall, in linear regression it was important to
divide by

√
1−Hii to account for the leverage that a point

had over its own fit

Similar steps can be taken for logistic regression; here, the
projection matrix is

H = W1/2X(XTWX)−1XTW1/2,

where W1/2 is the diagonal matrix with W
1/2
ii =

√
wi
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Properties of the hat matrix

In logistic regression, π̂ 6= Hy – no matrix can satisfy this
requirement, as logistic regression does not produce linear
estimates

However, it has many of the other properties that we
associate with the linear regression projection matrix:

Hr = 0
H is symmetric
H is idempotent
HW1/2X = W1/2X and XTW1/2H = XTW1/2

where r is the vector of Pearson residuals
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Standardized residuals

The diagonal elements of H are again referred to as the
leverages, and used to standardize the residuals:

rsi =
ri√

1−Hii

dsi =
di√

1−Hii

Generally speaking, the standardized deviance residuals tend
to be preferable because they are more symmetric than the
standardized Pearson residuals, but both are commonly used
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Leave-one-out diagnostics

You may recall that in linear regression there were a number
of diagnostic measures based on the idea of leaving
observation i out, refitting the model, and seeing how various
things changed (residuals, coefficient estimates, fitted values)

You may also recall that for linear regression, it was not
actually necessary to refit the model n times; explicit
shortcuts based on H were available

The same idea can be extended to generalized linear models,
although we cannot take advantage of the explicit-solution
shortcuts without making approximations
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One-step approximations

The resulting approximate statistics are said to be one-step
approximations to the true values

The issue is that we can quickly calculate the one-step
approximations based on the current weights {wi} without
refitting anything, but to calculate the exact value, we would
need to go through n IRLS algorithms

The approximations are usually pretty good, although if one
point has a very large influence, then the approximation may
be quite different from the true value
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One-step approximations

One-step approximations allow us to quickly calculate the following
diagnostic statistics for GLMs:

Studentized deleted residuals

∆β (for assessing the change in individual coefficients)

Cook’s distance (for assessing overall influence over the model
fit)
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Variance inflation factors

It is worth mentioning variance inflation factors (VIF) briefly
here
VIF is a function of X alone, and therefore how VIF is
calculated and what it means is essentially equivalent to the
linear regression case (“essentially equivalent” because we do
have weights for GLMs)
In R, we can use the vif function from the car package:

> vif(fit)

Age Sex Age:Sex

7.416253 14.159377 16.989516

In SAS, this is a bit painful, as we have to use PROC REG,
which doesn’t support the CLASS statement or interactions in
the MODEL statement, and you have to calculate and
incorporate the weights manually (see code for the messy
details)
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Multicollinearity

If you believe multicollinearity to be a problem, it is often a
good idea to look at the correlation matrix for X:

cor(model.matrix(fit)[,-1])

Age Sex Age:Sex

Age 1.00 0.04 0.52
Sex 0.04 1.00 0.82

Age:Sex 0.52 0.82 1.00

In this model, we are certainly introducing a lot of variability
by including an interaction; on the other hand, the interaction
did seem to be important p = 0.05
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Leverage

To get a sense of the information these statistics convey, let’s look
at various plots of the Donner party data, starting with leverage:
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Cook’s Distance
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Delta-beta (for effect of age)
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Residuals / proportional leverage
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Residuals are certainly less informative for logistic regression
than they are for linear regression: not only do yes/no
outcomes inherently contain less information than continuous
ones, but the fact that the adjusted response depends on the
fit hampers our ability to use residuals as external checks on
the model

This is mitigated to some extent, however, by the fact that we
are also making fewer distributional assumptions in logistic
regression, so there is no need to inspect residuals for, say,
skewness or heteroskedasticity
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Nevertheless, issues of outliers and influential observations are
just as relevant for logistic regression as they are for linear
regression

In my opinion, it is almost never a waste of time to inspect a
plot of Cook’s distance

If influential observations are present, it may or may not be
appropriate to change the model, but you should at least
understand why some observations are so influential
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Extubation example

Left: Linear cost; Right: Log(Cost)

0 50 100 200 300

0
1

2
3

4
5

Obs. number

C
oo

k'
s 

di
st

an
ce

Cook's distance

317

419180

0 50 100 200 300
0.

00
0.

10
0.

20

Obs. number

C
oo

k'
s 

di
st

an
ce

Cook's distance

317

419

429

Patrick Breheny BST 760: Advanced Regression 23/24



Building blocks
Diagnostics

Summary

Variance inflation

Finally, keep in mind that although multicollinearity and
variance inflation are important concepts, it is not always
necessary to calculate a VIF to assess them

It is usually a good idea when modeling to start with simple
models and gradually add in complexity

If you add a variable or interaction and the standard errors
increase dramatically, this is a direct observation of the
phenomenon that VIFs are attempting to estimate
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