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Introduction: The Wald approach

@ Thus far, all our inferences have been based on the result:
B~ N (B, o(X"WX)™1)

@ This approach has the great advantage of simplicity: all you
need to know is 3 and Var(,@) and you may construct by hand
all the tests and confidence intervals you need for any element
of 3 or any linear combination of the elements of 3 (these are
called “Wald tests”, “Wald confidence intervals”, etc.)

@ Recall, however, that the result on the previous slide is based

on an approximation to the likelihood at the MLE, and this
approximation may be poor at 3 values far from 3
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Likelihood ratios

@ A competing approach is based on likelihood ratios
@ We consider the univariate case first, comparing the likelihood
at an arbitrate value 6 with that of the MLE 6:

_ Lo

L(0)

@ Theorem: As n — oo with iid data, subject to the usual
regularity conditions,

—2log A 4, X%
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Likelihood ratios for regression

@ This result can be extended to multivariate and non-iid cases
as well; consider two models:

Full: 8 = (3, 8?)
Reduced: 8 = (8", 8?)

where ,8(()1) is a specified vector of constants

@ Letting A denote the likelihood ratio comparing the reduced
model to the full model, we have

—2log A ~ XZ,

where ¢ is the length of 31 (typically, the number of
parameters assumed to be zero)
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Likelihood ratio tests and confidence intervals

@ This result allows us to carry out hypothesis tests by
calculating p = Pr(x2 > 2log()))

@ It also allows us to construct (1 — «) confidence intervals by
inverting the above test — i.e., finding the set of parameter
values B(()l) such that

-2 log < X%—a,qv

LB = 8y")
L(B)

where x7_,, , is the (1 — a) quantile of the x* distribution
with g degrees of freedom
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Wald vs. Likelihood ratio

Estimating the effect of age upon survival for females in the
Donner party:

.
S 95% confidence intervals:
2 . \ Wald: (—0.365, —0.023)

LR: (—0.428,—-0.057)
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@ As you can see, the Wald approach is incapable of capturing
asymmetry in the likelihood function, and must therefore
always produce symmetric confidence intervals about the MLE

@ The likelihood ratio is not subject to this restriction (the
downside, of course, is that we must refit a new model at all
the different values for j3)

@ This impacts hypothesis testing as well: for testing the
interaction term, the Wald test gives p = 0.087 while the LRT
gives p = 0.048

Patrick Breheny BST 760: Advanced Regression



Wald vs. Likeli
Complete atio lllustration

Wald vs. Likelihood ratio

For the donner data, n = 45 and p = 3; when n is larger, the
agreement is much better (here, n = 100, p = 2):

—— Likelihood ratio =—— Wald
= 95% confidence intervals:
g | Wald: (—0.321,0.461)
LR: (—0.322,0.468)
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Wald vs. Likelihood ratio

When n is smaller, the agreement is even worse (here, n = 6,

p=2):
—— Likelihood ratio —— Wald
s (\\ 95% confidence intervals:
g L] Wald: (—10.4,35.3)
10 LR: (0.336,59.7)
B
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Likelihood ratio vs. Wald Summary

@ The Wald approach enjoys popularity due to its simplicity
(likelihood ratio confidence intervals are obviously difficult to
construct by hand)

@ The two approaches often agree quite well

@ However, there are also situations where the two disagree
dramatically

@ Tests and confidence intervals based on likelihood ratios are
more accurate, and should be trusted over the Wald approach
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Complete separation

@ Just as in univariate statistics, when n is large we can often
ignore the fact that our data is discrete and use a normal
approximation

@ When n is small, however, problems can arise
@ Consider the following data:

X
-1.64
-0.80
-0.46
-0.46
-0.34
0.12
0.62
0.64
0.73
1.10

H R R R OOOOOK
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Complete separation (cont'd)

@ If we try to fit a logistic regression model to this data, we find
that the algorithm will not converge and we get warning
messages in SAS and R

@ The reason is that all of the events occur when x is large and
don’t occur when z is small

@ To put it another way, we can draw a line in the x's and
separate the y = 0's from the y = 1's

@ This phenomenon is referred to as complete separation (or
more generally, as the problem of monotone likelihood)
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Monotone likelihood
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Ramifications

e What it means is that the MLE occurs at infinity (or —o0)
@ This has a number of ramifications:

o Numerical algorithms will fail
o Weights will go to zero
e Standard errors will go to infinity

@ Note, however, that likelihood ratio tests are still valid
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Complete separation: Practical aspects

@ This has a number of complicated ramifications for inference
lie beyond the scope of this course

@ Practically speaking, the ramifications are that the data do
not allow you to estimate a certain parameter in the way that
the model is currently specified

@ This can often occur when models are overparameterized — in
models with many explanatory variables, complete separation
occurs whenever a linear predictor completely separates the
outcome

@ In linear regression, estimates are only undefined if X is not
full rank; in logistic regression, complete separation represents
an additional restriction on the complexity of the design
matrix
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Fitted probabilities of 0 or 1

o Finally, it is worth noting that you may sometimes see a
warning message along the lines of “fitted probabilities
numerically 0 or 1 occurred”; this is very different from
complete separation

@ Because 7; is a function of exp(7;), extreme 7); values can
easily produce fitted probabilities extremely close to 0 or 1;
this causes problems numerically in the IRLS algorithm, since
Wi =mi(1 —m)

@ Keep in mind that this is a warning, not an error — the model
can still be fit and all the usual inferential procedures applied

@ However, it is generally an indication that your data contains
outliers, and some investigation into those points with 0 or 1
probabilities is typically warranted
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