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Introduction

@ So far, we've discussed the basic properties of the score, and
the special connection between the score and the natural
parameter (6) that exists in exponential families

@ Today, in the final installment of our three-part series on
likelihood theory, we'll arrive at the important result: what
does all this imply about the distribution of the maximum
likelihood estimator, 67
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Taylor series expansions

@ The basic mathematical tool we will need for today is the
Taylor series expansion, one of the most widely applicable and
useful tools in statistics

@ The basic idea is to take a complicated function and simplify
it by approximating it with a straight line:

f(x) = f(xo) + f'(x0)(x — x0),

where x( is the point we are basing the approximation on

@ This approximation will be reasonably accurate provided that
we are in the neighborhood of xg
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Taylor series expansions: lllustration

f(x)
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Quadratic approximations

@ The idea can be extended to higher-order polynomials as well:

£(a) = fwo) + (@) = 20) + /" z0) & — 20)?

provides a quadratic approximation to f(x)
@ This will provide an even more accurate approximation

@ In principle, one could keep going with higher and higher order
derivatives, obtaining more and more accurate
approximations, but all we need for the purposes of this class
is first- and second-order approximations
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Multivariate extensions

@ The preceding formulas are for univariate functions; the idea
readily extends to functions of more than one variable:

f(x) ~ f(x0) + Vf(x0)" (x = x0)
f(x) = f(x0) + (x = %0)"V f(xo) + %(X —%0)"{V?f(x0)}(x — x0)
@ This are the versions we need for regression modeling, as we

have quantities (e.g., the likelihood, the score) that will
depend on a vector of parameters 3
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Relationship between the score and the MLE

@ Recall that
u~ N(0,V)

and that, for exponential families,

Y, — V(0
“:Z ¢( )
i=1

@ Thus, we know the (approximate) distribution of u, but the
distribution of € is complex because the function b'(8) may be
complicated and nonlinear
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Approximating the score

@ We can make progress, however, by applying a Taylor series
approximation to the score at the MLE

o Let H(@) = Vu(0); note that this is the Hessian matrix of
second derivatives for the log-likelihood

o Result:
u(6) ~ H(0)(0 - 0),
where 8 is the MLE; or more simply,

u~ H( - 0),

provided we keep in mind that H is evaluated at the MLE
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Observed vs. Fisher information

@ Recall that there was a connection between the Hessian and
the information:

V = -E(H);

in other words, the information is the (negative) Hessian we
would expect to observe

o In practice, it usually easier to deal with H(8), the Hessian we
actually did observe

e Correspondingly, —H(8|y) is referred to as the observed
information, as opposed to —nE{H(0|Y")}, which is referred
to as the Fisher information
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Observed vs. Fisher information (cont'd)

@ For the purposes of this class, the distinction between the two
is not terribly important — our approximate results hold
regardless of which information is used

o | will use the term “information” and the symbol V generically
to refer to either kind of information, unless otherwise noted
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Sampling distribution of MLEs

@ We are now ready to prove the following:

@ Theorem: The sampling distribution of a maximum likelihood
estimator is approximately normal, with

6~ N6,V

@ This can also be stated more rigorously; under certain
regularity conditions,
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@ Note that this relationship provides another perspective on
information: as the information in the sample goes up, the
variability of 8 goes down (as does, correspondingly, our
uncertainty about the true value of 6)

@ This also allows us to use familiar results from the normal
distribution to construct tests and confidence intervals for
individual parameters 0;

@ Furthermore, it tells us how the MLEs for various parameters
are correlated, allowing us to easily work out the sampling
distributions for linear combinations of parameters

Patrick Breheny BST 760: Advanced Regression



@ Another way of thinking about what we are doing is as a
quadratic approximation to the log-likelihood:

. 1 . .
0(6) ~ ((6) — 5(6 - )TV (0 —0)
@ Noting that the log-likelihood of the normal distribution

actually is quadratic; it should come as no surprise that 0 is
normally distributed
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Non-identically distributed observations

@ The preceding derivations have all assumed we have
identically and independently distributed observations

@ This, of course, is not the case in modeling: the natural
parameter, 0;, for each observation is different; we expect it to
change depending on the explanatory variables — indeed,
understanding how the explanatory variables affect the
outcome is the entire point of the analysis

e Of course, we don't go about estimating {6;} directly, as this
would be unstable; instead, we impose a relationship between
0 and the explanatory variables that is governed by the
systematic component of the model
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Canonical link simplification

@ In what follows, | will assume we are working with the
canonical link, in which case we are directly modeling the
natural parameters and @ = X3; you can still work out
relationships and distributions for other links, but the
expressions are quite a bit messier

@ Specifically, for the canonical link, % = X7 this greatly
simplifies the application of the chain rule in what follows
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Information under the canonical link

@ Provided that we are estimating 3 using maximum likelihood,
we can apply our earlier result and state that
~ .
B~N(B, V)

the only catch is that we have to work out the information
with respect to 3

@ Theorem: For the canonical link,
V = ¢ ' XTWX,

where W is an n x n diagonal matrix with entries
W,; = W(u;), the function dictating the mean-variance
relationship for distribution in an exponential family
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Sampling distribution of B

@ To summarize, then, we have the following theorem:

@ Theorem: The sampling distribution of the regression
coefficients from a GLM with canonical link are approximately
normal, with

B~ N (B, o(XTWX)™)

@ The usual caveat applies: the above is based on the
assumption that the model holds

Patrick Breheny BST 760: Advanced Regression 18/20



Asymptotic di

Confidence intervals and hypothesis tests

@ Thus, we can derive confidence intervals and hypothesis tests
in manner entirely analogous to the linear regression case

@ Result: Suppose that the model specified by the GLM holds.
Then

ﬁj/—\ﬁj <7
SE
where SE is the square root of qg(XTWX)j_j1
@ Corollary: Suppose that the model specified by the GLM
holds. Then
TA _\T
A ,BA)\ 3 o7
SE
where SE is the square root of AAT(XTWX) 1A

)

Patrick Breheny BST 760: Advanced Regression



Asymptotic dis on of th
erence for

Confidence intervals and hypothesis tests (cont'd)

@ Note that:
o We're assuming that there is some reasonable way to estimate
¢; the details vary depending on the distribution
e The matrix W is evaluated at 8
@ Furthermore, recall that this is an approximation based on the
MLE; as we saw at the beginning, this approximation may not
be accurate for 3 far away from ,@

@ We'll look at the implications of this, as well as remedies,
later in the semester
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