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Introduction

So far, we’ve discussed the basic properties of the score, and
the special connection between the score and the natural
parameter (θ) that exists in exponential families

Today, in the final installment of our three-part series on
likelihood theory, we’ll arrive at the important result: what
does all this imply about the distribution of the maximum
likelihood estimator, θ̂?
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Taylor series expansions

The basic mathematical tool we will need for today is the
Taylor series expansion, one of the most widely applicable and
useful tools in statistics

The basic idea is to take a complicated function and simplify
it by approximating it with a straight line:

f(x) ≈ f(x0) + f ′(x0)(x− x0),

where x0 is the point we are basing the approximation on

This approximation will be reasonably accurate provided that
we are in the neighborhood of x0
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Taylor series expansions: Illustration
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Quadratic approximations

The idea can be extended to higher-order polynomials as well:

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2

provides a quadratic approximation to f(x)

This will provide an even more accurate approximation

In principle, one could keep going with higher and higher order
derivatives, obtaining more and more accurate
approximations, but all we need for the purposes of this class
is first- and second-order approximations
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Quadratic illustration
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Multivariate extensions

The preceding formulas are for univariate functions; the idea
readily extends to functions of more than one variable:

f(x) ≈ f(x0) +∇f(x0)
T (x− x0)

f(x) ≈ f(x0) + (x− x0)
T∇f(x0) +

1

2
(x− x0)

T {∇2f(x0)}(x− x0)

This are the versions we need for regression modeling, as we
have quantities (e.g., the likelihood, the score) that will
depend on a vector of parameters β
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Relationship between the score and the MLE

Recall that

u
.∼ N(0,V)

and that, for exponential families,

u =

n∑
i=1

Yi − b′(θ)
φ

Thus, we know the (approximate) distribution of u, but the
distribution of θ̂ is complex because the function b′(θ) may be
complicated and nonlinear
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Approximating the score

We can make progress, however, by applying a Taylor series
approximation to the score at the MLE

Let H(θ) = ∇u(θ); note that this is the Hessian matrix of
second derivatives for the log-likelihood

Result:

u(θ) ≈ H(θ̂)(θ − θ̂),

where θ̂ is the MLE; or more simply,

u ≈ H(θ − θ̂),

provided we keep in mind that H is evaluated at the MLE
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Observed vs. Fisher information

Recall that there was a connection between the Hessian and
the information:

V = −E(H);

in other words, the information is the (negative) Hessian we
would expect to observe

In practice, it usually easier to deal with H(θ̂), the Hessian we
actually did observe

Correspondingly, −H(θ|y) is referred to as the observed
information, as opposed to −nE{H(θ|Y )}, which is referred
to as the Fisher information
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Observed vs. Fisher information (cont’d)

For the purposes of this class, the distinction between the two
is not terribly important – our approximate results hold
regardless of which information is used

I will use the term “information” and the symbol V generically
to refer to either kind of information, unless otherwise noted
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Sampling distribution of MLEs

We are now ready to prove the following:

Theorem: The sampling distribution of a maximum likelihood
estimator is approximately normal, with

θ̂
.∼ N(θ,V−1)

This can also be stated more rigorously; under certain
regularity conditions,

√
n(θ̂ − θ)

d−→ N(0,V−1i )
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Remarks

Note that this relationship provides another perspective on
information: as the information in the sample goes up, the
variability of θ̂ goes down (as does, correspondingly, our
uncertainty about the true value of θ)

This also allows us to use familiar results from the normal
distribution to construct tests and confidence intervals for
individual parameters θj

Furthermore, it tells us how the MLEs for various parameters
are correlated, allowing us to easily work out the sampling
distributions for linear combinations of parameters
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Remarks

Another way of thinking about what we are doing is as a
quadratic approximation to the log-likelihood:

`(θ) ≈ `(θ̂)− 1

2
(θ̂ − θ)TV(θ̂ − θ)

Noting that the log-likelihood of the normal distribution
actually is quadratic; it should come as no surprise that θ̂ is
normally distributed
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Non-identically distributed observations

The preceding derivations have all assumed we have
identically and independently distributed observations

This, of course, is not the case in modeling: the natural
parameter, θi, for each observation is different; we expect it to
change depending on the explanatory variables – indeed,
understanding how the explanatory variables affect the
outcome is the entire point of the analysis

Of course, we don’t go about estimating {θi} directly, as this
would be unstable; instead, we impose a relationship between
θ and the explanatory variables that is governed by the
systematic component of the model
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Canonical link simplification

In what follows, I will assume we are working with the
canonical link, in which case we are directly modeling the
natural parameters and θ = Xβ; you can still work out
relationships and distributions for other links, but the
expressions are quite a bit messier

Specifically, for the canonical link, ∂θ
∂β = XT ; this greatly

simplifies the application of the chain rule in what follows
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Information under the canonical link

Provided that we are estimating β using maximum likelihood,
we can apply our earlier result and state that

β̂
.∼ N(β,V−1);

the only catch is that we have to work out the information
with respect to β

Theorem: For the canonical link,

V = φ−1XTWX,

where W is an n× n diagonal matrix with entries
Wii =W (µi), the function dictating the mean-variance
relationship for distribution in an exponential family
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Sampling distribution of β̂

To summarize, then, we have the following theorem:

Theorem: The sampling distribution of the regression
coefficients from a GLM with canonical link are approximately
normal, with

β̂
.∼ N

(
β, φ(XTWX)−1

)
The usual caveat applies: the above is based on the
assumption that the model holds

Patrick Breheny BST 760: Advanced Regression 18/20



Taylor series expansions
Asymptotic distribution of the MLE

Inference for GLMs

Confidence intervals and hypothesis tests

Thus, we can derive confidence intervals and hypothesis tests
in manner entirely analogous to the linear regression case

Result: Suppose that the model specified by the GLM holds.
Then

β̂j − βj
ŜE

.∼ Z,

where ŜE is the square root of φ̂(XTWX)−1jj

Corollary: Suppose that the model specified by the GLM
holds. Then

λT β̂ − λTβ

ŜE

.∼ Z,

where ŜE is the square root of φ̂λT (XTWX)−1λ
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Confidence intervals and hypothesis tests (cont’d)

Note that:

We’re assuming that there is some reasonable way to estimate
φ; the details vary depending on the distribution
The matrix W is evaluated at β̂

Furthermore, recall that this is an approximation based on the
MLE; as we saw at the beginning, this approximation may not
be accurate for β far away from β̂

We’ll look at the implications of this, as well as remedies,
later in the semester
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