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Introduction

An important distinction between linear and logistic regression
is that the regression coefficients in logistic regression are not
terribly meaningful on their own

In linear regression, a coefficient βj = 1 means that if you
change xj by 1, the expected value of Y will go up by 1 (very
interpretable)

In logistic regression, a coefficient βj = 1 means that if you
change xj by 1, the log of the odds that Y occurs will go up
by 1 (much less interpretable)
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Introduction (cont’d)

When outcomes are categorical, it is much easier to think
about the outcome in terms of probabilities and odds ratios

These are the quantities that are usually reported and
described in an analysis, rather than the regression coefficients
themselves

Today’s lecture is about estimating, constructing confidence
intervals, and carrying out hypothesis tests for these quantities
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Estimating probabilities

We have already talked about estimation of probabilities
based on the fit of a logistic regression model:

(1) Given a vector of explanatory variables x, calculate the linear

predictor η̂ = xT β̂
(2) Estimate the probability based on

π̂ =
eη̂

1 + eη̂

It should be noted that, since maximum likelihood estimates
are invariant to transformation, π̂ may also be considered the
maximum likelihood estimate of π
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Confidence intervals for probabilities

Construction of confidence intervals proceeds similarly

Using the fact that

xT β̂ − xTβ

ŜE

.∼ z,

where ŜE =
√

xT (XTWX)−1x

We can then construct a confidence interval for η:

(L,U) = (η̂ − zα/2ŜE, η̂ + zα/2ŜE)

A (1− α) confidence interval for π is therefore(
eL

1 + eL
,

eU

1 + eU

)
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Hypothesis testing

In principle, one could carry out hypothesis tests of
H0 : π = π0 based on this approach as well: calculate

η0 = log

(
π0

1− π0

)

and then test H0 : η = η0 based on the fact that, under H0,

η̂ − η0
ŜE

.∼ z

In practice, however, it is quite rare to have a hypothesis about
a specific type of subject that you are interested in testing
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Limitations of estimating probabilities

Probabilities have the advantage that they are particularly
easy to interpret (everyone knows what a probability is)

However, working with probabilities is inconvenient for logistic
regression in many ways

First of all, the model is not linear in probability

Suppose βj = 1 and xj changes by 1; how does that affect
the probability?

Well, if we started out at 50%, it goes up to 73%; but if we
start at 90%, it only goes up to 96%
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Limitations of estimating probabilities (cont’d)

Another way of putting this is that in order to calculate the
change in probability as one explanatory variable changes, you
have to specify all the explanatory variables

This complicates (when lots of variables are present, greatly
complicates) the most attractive feature of an additive model:
the ability to describe what happens when you change one
thing and leave the rest the same
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Logistic regression and case-control studies

This has particularly important consequences for case-control
studies

Theorem: In a case-control study, the maximum likelihood

estimates β̂1, . . . , β̂p−1 as well as their approximate sampling
distributions are equivalent to that obtained from the logistic
regression model, under the assumptions that

(a) The model is correct
(b) The selection of cases and controls is independent of the

explanatory variables

Patrick Breheny BST 760: Advanced Regression 9/20



Probabilities
Logistic regression and case-control studies

Odds ratios

Case-control assumptions

The assumption that selection of cases and controls is
independent of the explanatory variables is actually a pretty
big assumption, often violated in actual case-control studies

This is a major source of bias

For example, case-control studies have found links between
childhood leukemia and exposure to electromagnetic fields
(EMF)
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Electromagnetic field example

However, subsequent investigations have indicated that this is
due entirely to case-control bias

Families with low socioeconomic status are more likely to live
near electromagnetic fields

Families with low socioeconomic status are also less likely to
participate in studies as controls

Socioeconomic status does not affect the participation of
cases, however (cases are usually eager to participate)

This results in a spurious association between EMF and
leukemia
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The intercept

Another important thing to note from the preceding theorem
is that it makes no claim about β̂0
This is because the case-control sampling affects the
likelihood with respect to β0, as the sampling probabilities are
absorbed into the intercept:

βCase control
0 = βRandom sample

0 + log

(
τ1
τ0

)
,

where τ1 and τ0 are the selection probabilities for cases and
controls, respectively

In the usual situation where we intentionally oversample cases,
this leads to overestimation of β0
Thus, it is not possible to estimate the β0 that describes the
general population (unless we know τ1 and τ0), and therefore
not possible to estimate probabilities either
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Odds ratios: introduction

Given that the regression coefficients are difficult to interpret,
but that estimation of probabilities has a number of
drawbacks, how should we summarize and report our model?

It turns out that odds ratios provide a readily interpretable
and easily estimated compromise, without any of the
drawbacks of estimating probabilities
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Estimation of odds ratios

Note that the odds of the event occurring for a subject with
vector of explanatory variables x is

π

1− π
= exp(xTβ)

Thus, the odds ratio for comparing two subjects, one with
explanatory variables x1 and the other with x2, is

π2/(1− π2)
π1/(1− π1)

=
exp(xT2 β)

exp(xT1 β)

= exp{(x2 − x1)
Tβ})
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Estimation of odds ratios (cont’d)

In particular, consider the odds ratio for what happens when
xj changes by an amount δj , while the rest of the explanatory
variables remain the same:

OR = exp(δjβj)

This is exactly what we need: all the other variables vanish
and our estimate depends only on the βj and the change in xj

We can therefore estimate this odds ratio, as well as carry out
inference, based entirely on β̂j

In particular, we don’t even need to be able to estimate β0, so
we can apply these results to case-control studies
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Estimation of odds ratios: example

For example, what is the odds ratio for a member of the
Donner party failing to survive the winter with a 10-year
increase in age?

OR = exp(10 · 0.0325) = 1.4 (Male)

OR = exp(10 · 0.1941) = 7.0 (Female)

Note that these odds ratios apply to any 10-year difference
(50 vs. 40, 30 vs. 20, etc.) due to the linearity assumption
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Confidence intervals for odds ratios

As with probabilities, confidence intervals for odds ratios can
be obtained by first obtaining confidence intervals in terms of
β̂ and then transforming

The confidence intervals for the slope of the effect of age on
the linear predictors are

(−0.0366, 0.1016) (Male)

(0.0227, 0.3654) (Female)

The confidence intervals for the odds ratios of dying (again,
with a change of 10 years in age) are:

e10·(L,U) = (0.7, 2.8) (Male)

e10·(L,U) = (1.3, 38.6) (Female)
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Hypothesis tests

Hypothesis tests of odds ratios (and for that matter,
probabilities) are directly equivalent to tests of regression
coefficients, since all the following are equivalent:

βj = 0
Odds ratio = 1
Difference in probabilities = 0
Ratio of probabilities (relative risk) = 1
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Hypothesis tests: Example

For example, the test of H0 : βAge|Male = 0 yields

z =
−0.03248

0.03527
= −0.921,

and p = 2Φ(−0.921) = 0.36

Meanwhile, the test of H0 : βAge|Female = 0 yields p = .03

The tests are relatively low-powered because there are only 45
subjects; hence the relatively high p-values despite the large
estimated effects

This phenomenon was apparent from the wide confidence
intervals as well
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Confidence intervals: Wald vs. likelihood ratio

This is not the only way (indeed, it isn’t even the best way) to
approach inference for GLMs

The approach we have discussed today is known as the Wald
approach, after the statistician Abraham Wald

This approach, however, is based on an approximation to the
likelihood at β̂; it does not necessarily provide accurate
information about values of β far from β̂

Next time, we will discuss an alternative approach to testing
and constructing confidence intervals based on likelihood
ratios and see that it suffers less from the approximation
problem
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