GLM estimation and model fitting

Patrick Breheny

February 19

Introduction

- In previous lectures, we've discussed the theoretical properties of $\hat{\beta}$, the regression coefficients of a generalized linear model
- We turn our attention today to a more practical matter: how do we actually solve for $\hat{\beta}$?
- This is a more challenging question than it sounds in general, there is no closed form solutions for the maximum likelihood estimator $\hat{\beta}$
- Nevertheless, it turns out that we can com the ideas from our last two lectures (Taylor series approximations and iteratively reweighted least squares) to obtain an algorithm for obtaining $\hat{\beta}$

MLEs for GLMs

- \bullet As we have discussed previously, we obtain MLEs by setting the score vector equal to 0
- Recall that for a GLM using the canonical link function, the score vector is

$$\mathbf{u}(\boldsymbol{\beta}) = \phi^{-1} \mathbf{X}^T (\mathbf{y} - \boldsymbol{\mu})$$

• Note that in the above equation, μ is a function of $\eta = \mathbf{X}\beta$; however, it need not be a linear function, and if it is not, we lack a closed-form solution for β

Taylor approximation for μ

 Nevertheless, we can apply a Taylor series approach to obtain the following approximation about the point β̃:

$$\boldsymbol{\mu} \approx \tilde{\boldsymbol{\mu}} + \mathbf{W}(\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\tilde{\boldsymbol{\beta}}),$$

where $\tilde{\boldsymbol{\mu}} = g^{-1}(\mathbf{X}\tilde{\boldsymbol{\beta}})$

- Note that the above result rests on the following proposition
- Proposition: If g is the canonical link, then

$$\frac{d}{d\eta}g^{-1}(\eta) = W(\eta)$$

Main result

 Thus, we obtain the following linear approximation to the score for β:

$$\frac{\partial \ell}{\partial \boldsymbol{\beta}} \approx \phi^{-1} \mathbf{X}^T \mathbf{W} (\mathbf{z} - \mathbf{X} \boldsymbol{\beta}),$$

where $\mathbf{z} = \mathbf{X}\tilde{\boldsymbol{\beta}} + \mathbf{W}^{-1}(\mathbf{y} - \tilde{\boldsymbol{\mu}})$ is known as the *adjusted* response)

- Note that this approximation is based at $\tilde{\beta}$ or, equivalently, $\tilde{\mu}$, which are treated as constants in the above expression, thereby rendering the score equation linear in β after the approximation
- Again, recall that this approximation will be accurate near the fitted values $\tilde{\mu}$, but not necessarily accurate far away from them

Updates

• As we saw previously, this gives the maximum likelihood estimate

$$\widehat{\boldsymbol{\beta}}^{(m)} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{z}$$

- Note that **W** here plays the role of the weights in weighted least squares, and for that reason is often referred to as the *weight matrix*
- Again, recall that for the canonical link, W is entirely determined by the mean-variance relationship, and that it plays a prominent role in the variability of $\hat{\beta}$ as well
- Note that in the above equation, we require a superscript on $\widehat{\boldsymbol{\beta}}^{(m)}$ because this is a case of unknown weights, where W (and z) will change depending on $\widehat{\boldsymbol{\beta}}$ and vice versa

As we saw earlier, one way to address this problem is to iterate the process of reweight–estimate–reweight–estimate–... until convergence; this *iteratively reweighted least squares* (IRLS) algorithm is how generalized linear models are fit:

The Newton-Raphson algorithm

- This IRLS algorithm is a special case of a more general approach to optimization called the *Newton-Raphson* algorithm
- The Newton-Raphson algorithm calculates iterative updates via

$$\widehat{\boldsymbol{\beta}}^{(m+1)} = \widehat{\boldsymbol{\beta}}^{(m)} - \mathbf{H}^{-1}\mathbf{u},$$

where **u** is the score vector and **H** is the Hessian matrix (the first and second derivatives of the log-likelihood, respectively), both of which are evaluated at $\hat{\beta}^{(m)}$

• It can be shown (homework) that this produces the same iterative updates as IRLS

Unique solutions and rank

- Recall that, for linear regression, a full-rank design matrix **X** implied that there was exactly one unique solution $\hat{\beta}$ which minimized the residual sum of squares
- A similar result holds for generalized linear models: if **X** is not full rank, then there is no unique solution which maximizes the likelihood

Additional issues for GLMs

- However, two additional issues arise in generalized linear models:
 - Although a unique solution exists, the IRLS algorithm is not guaranteed to find it
 - It is possible for the unique solution to be infinite, in which case the estimates are not particularly useful and inference breaks down
- The first issue is uncommon; we will see an example of the second issue in an upcoming lecture