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Introduction

In our first lecture on the framework of generalized linear
models, we remarked that the mathematics of generalized
linear models “work out nicely only for a special class of
distributions called the exponential family of distributions”

Today we will see what the exponential family is, examine
some special cases, and see what it is about members of the
exponential family that makes them so attractive to work with
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Definition

A distribution falls into the exponential family if its
distribution function can be written as

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
,

where the parameter of interest θ = h(µ) depends on the
expected value of y, φ is a positive scale parameter, and b and
c are arbitrary functions

This representation can written different ways and can be
slightly generalized, but the above definition is sufficient for
all commonly used GLMs

As we will see, if a distribution can be written in this manner,
maximum likelihood estimation and inference are greatly
simplified and can be handled in a unified framework
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Example: Poisson distribution

To get a sense of how the exponential family works, let’s work
out the representation of a few common families, starting with
the Poisson:

f(y|µ) = µye−µ

y!

This can be rewritten as

f(y|µ) = exp{y logµ− µ− log y!},

thereby falling into the exponential family with θ = logµ and
b(θ) = eθ

Note that the Poisson does not have a scale parameter
(φ = 1); for the Poisson distribution, the variance is
determined entirely by the mean
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Example: Normal distribution

Other distributions such as the normal, however, require a scale
parameter:

f(y|µ) = 1√
2πσ2

exp

{
−(y − µ)2

2σ2

}
= exp

{
yµ− 1

2µ
2

σ2
− 1

2

[
y2

σ2
+ log(2πσ2)

]}
,

which is in the exponential family with θ = µ, b(θ) = 1
2θ

2, and
φ = σ2
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Example: Binomial distribution

Finally, let’s consider the binomial distribution with n = 1:

f(y|µ) = µy(1− µ)1−y

= exp

{
y log

(
µ

1− µ

)
+ log(1− µ)

}
,

which is in the exponential family with

θ = log

(
µ

1− µ

)
b(θ) = log(1 + eθ)

Note that, like the Poisson, the binomial distribution does not
require a scale parameter

The more general n > 1 case is also in the exponential family
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Score statistic for exponential families

What is so special about exponential families?

As we have seen, maximum likelihood theory revolves around
the score; consider, then, the score for a distribution in the
exponential family:

U =
∂

∂θ
`(θ, φ|y)

=
y − b′(θ)

φ
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Properties of the score statistic

Recall from our previous lecture that the score has the
following properties:

E(U) = 0

Var(U) = −E(U ′);

also recall that the variance of U is referred to as the
information

For distributions in the exponential family,

Var(U) = φ−1b′′(θ)
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Mean and variance for exponential families

Thus, for the exponential family,

E(Y ) = b′(θ)

Var(Y ) = φb′′(θ)

Note that the variance of Y depends on both the scale
parameter (a constant) and on b, a function which controls
the relationship between the mean and variance

Thus, letting µ = b′(θ) and writing b′′(θ) as a function of µ
with W (µ) = b′′(θ), we have

Var(Y ) = φW (µ)

Var(U) = φ−1W (µ)
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Examples

For the normal distribution, W (µ) = 1; the mean and the
variance are not related

For the Poisson distribution, W (µ) = µ; the variance
increases with the mean

For the Binomial distribution, W (µ) = µ(1− µ); the variance
is largest when µ = 1/2 and decreases as µ approaches 0 or 1
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The canonical link

Although in principle, we can arbitrarily specify the
distribution and link function g, note that if we choose g = h
(recall that h was defined as θ = h(µ)), then

θi = h(µi) = h(h−1(ηi)) = ηi = xTi β

In other words, it ensures that the systematic component of
our model is modeling the parameter of interest (sometimes
called the natural parameter) in the distribution

There is, therefore, a reason to prefer this link (the canonical
link) when specifying the model
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Benefits of canonical links

Although one is not required to use the canonical link, they have
nice properties, both statistically and in terms of mathematical
convenience:

They simplify the derivation of the MLE, as we will see in a
week or so

They ensure that many properties of linear regression still
hold, such as the fact that

∑
i ri = 0

They tend to ensure that µ stays within the range of the
outcome variable
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Example: Binomial distribution

As an example of this last point, consider the canonical link
for the binomial distribution:

g(x) = log

(
x

1− x

)
µ = g−1(η)

=
eη

1 + eη

As η → −∞, µ→ 0, while as η →∞, µ→ 1

On the other hand, if we had chosen, say, the identity link, µ
could lie below 0 or above 1, clearly impossible for the
binomial distribution
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