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Introduction

Generalized linear models – indeed, the vast majority of
statistical methods that entered widespread use in the 20th
century – are based on the idea of likelihood

The idea of likelihood has a long history in statistics, but the
formal, rigorous study of likelihoods and their properties as
the foundation for inference is largely due to the work of R. A.
Fisher in the 1920s

Before we can study generalized linear models and their
properties, we need to establish a basic foundation in
likelihood theory
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Definition

Let f(x|θ) denote the pdf of the sample (X1, X2, . . . , Xn).
Then, given that sample x is observed, the likelihood function
of θ is defined to be

L(θ|x) = f(x|θ)

On the surface of things, this may seem uninteresting – the
likelihood function is just the same thing as the pdf

It is crucial to keep in mind, however, that f(x|θ) is a
function of x with θ known, while L(θ|x) is a function of θ
with x known

Patrick Breheny BST 760: Advanced Regression 3/19



Likelihood
The score statistic

Multivariate extensions

Interpretation

Thus, while f(x|θ) measures how probable various values of x
are for a given value of θ, L(θ|x) measures how likely the
sample we observed was for various values of θ

So, if L(θ1|x) > L(θ2|x), this suggests that it is more
plausible, in light of the data we have gathered, that the true
value of θ is θ1 than it is that θ2 is the true value

Of course, we need to address the question of how meaningful
a given difference in likelihoods is, but certainly it seems
reasonable to ask how likely it is that we would have collected
the data we did for various values of the unknown parameter θ
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Maximum likelihood estimation

Perhaps the most basic question is: which value of θ
maximizes L(θ|x)?

This is known as the maximum likelihood estimator, or MLE,
and typically abbreviated θ̂ (or θ̂MLE if there are multiple
estimators we need to distinguish between)

Provided that the likelihood function is differentiable and
unimodal, we can obtain the MLE by taking the derivative of
the likelihood and setting it equal to 0
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MLE: Example

For example, suppose X follows a binomial distribution with n
trials and probability of success θ

Exercise: Then θ̂ = x/n, the sample proportion
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Log-likelihood

Note that, for identically and independently distributed (iid)
data, we have:

L(θ|x) =

n∏
i=1

f(xi|θ)

This tends to be difficult to take the derivative of, as it
requires extensive use of the product rule

An alternative that is almost always simpler to work with is to
maximize the log of the likelihood, or log-likelihood instead:

`(θ|x) =

n∑
i=1

log{f(xi|θ)}
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MLE: Example

Note that the binomial example from before is a bit easier
when working with the log-likelihood

For other distributions, such as the normal, it is much easier
than working with the likelihood directly

Exercise: For the normal distribution with mean θ, θ̂ = x̄
regardless of the value of σ2
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Definition

Given that so much of maximum likelihood estimation
revolves around (a) working with the log-likelihood and (b)
taking derivatives, it is perhaps unsurprising that the
derivative of the log-likehood is given its own name: the score
Formally, the score, commonly denoted U , is defined as

UX(θ) =
d

dθ
`(θ|X);

note that U is a random variable, as it depends on X, and is
also a function of θ – these will often be dropped for the sake
of convenience in the notation
Note that with iid data, the score of the entire sample is the
sum of the scores for the individual observations:

U =
∑
i

Ui
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Role of the score in maximum likelihood estimation

Thinking about maximum likelihood estimation in terms of
the score, we see that the MLE is found by setting the sum of
the observed scores equal to 0:∑

i

Ui(θ̂) = 0

Exercise: For the normal distribution,

Ui =
Xi − θ
σ2

=⇒ θ̂ = x̄

Exercise: For the Poisson distribution,

Ui =
Xi

θ
− 1

=⇒ θ̂ = x̄
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Mean

We now turn our attention to the theoretical properties of the
score

It is worth noting that there are some regularity conditions
that f(x|θ) must meet in order for these theorems to work;
for the purposes of this class we will assume that we are
working with a distribution for which these hold (this is the
case for the vast majority of common situations, although
important exceptions do arise)

Theorem: E(U) = 0
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Variance

The variance of U is given a special name in statistics: it is
called the Fisher information or simply the information

In this class we will denote the information with a V to
emphasize this relationship

Like the score, the information is a function of θ, although
unlike the score, it is not random, as the random variable X
has been integrated out

Exercise: For the normal distribution, V = 1
σ2
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Information

The name “information” is apt: the amount of information
that each observation from a normal distribution contains is
inversely proportional to how noisy the data is

As another example, note that V =
∑

i Vi: for iid data, each
observation contains the same amount of information, and
they add up to the total information in the sample

For a sample from the normal distribution, V = n
σ2

Note that the expression Vi is perhaps a bit strange, in that V
is not random and thus does not vary from observation to
observation; nevertheless we will continue to use Vi from time
to time when it is necessary to distinguish the total
information from the information in a single observation

Patrick Breheny BST 760: Advanced Regression 13/19



Likelihood
The score statistic

Multivariate extensions

Another information identity

Another property of scores which is often useful is the
following:

V = −E{U ′}

Exercise: For the normal distribution, U ′
i = −1/σ2

Exercise: For the Poisson distribution, U ′
i = −X/θ2
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Asymptotic distribution

One final, very important theoretical result for the score may be
obtained by applying the central limit theorem:

√
n{Ū − E(U)} d−→ N(0, Vi),

or equivalently,

1√
n
U

d−→ N(0, Vi),

where the expression
d−→ means that the quantity on the left

“converges in distribution” to the distribution on the right as the
sample size n goes to ∞
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Asymptotic distribution (cont’d)

Other classes will cover the formal meaning of various kinds of
asymptotic convergence

For this class, we may simply take the result on the previous
slide to mean that

U
.∼ N(0, V ),

where
.∼ means “approximately distributed as”; this

approximation may be poor for small n, but will get better as
n gets larger
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Multiple parameters

The preceding results all describe a situation in which we are
interested in a single parameter θ

It is often the case (and always the case in regression
modeling) that f(x) depends on multiple parameters

All of the preceding results can be extended to the case where
we are interested in a vector of parameters θ = (θ1, θ2, . . . , θp)
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Multivariate extensions

The score is now defined as

U(θ) = ∇`(θ|x),

where ∇`(θ|x) is the gradient of the log-likelihood, and has
elements ∂

∂θ1
`(θ|x), ∂

∂θ2
`(θ|x), . . .

Note that the score is now a p× 1 vector; to denote this I will
often write the score vector as u

The MLE is now found by setting each component of the
score vector equal to zero; i.e., solving the linear system of
equations u = 0, where 0 is a p× 1 vector of zeros
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Multivariate extensions (cont’d)

The score still has mean zero: E(u) = 0

The variance of the score is still the information, Var(u) = V,
although the information V is now a p× p covariance matrix

It is still true that, for iid data, u =
∑

i ui and V =
∑

iVi

We again have that V = −E(∇u), where ∇u is a p× p
matrix of second derivatives with i, jth element ∂

∂θi
∂
∂θj
`(θ|x);

this matrix is sometimes referred to as the Hessian matrix

Finally, it is still true that u
.∼ N(0,V)
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