
Introduction to R

Patrick Breheny

January 17, 2013

Our goal for today is to introduce R, an open-source computing language designed to allow for fluid,
interactive data manipulation, analysis, and visualization. R is installed on all the computers in the lab,
but if you are interested in installing it at home, go to www.r-project.org. You can run R directly,
but it is often more convenient to run R through an integrated development environment such as RStudio
www.rstudio.com, which is also installed on the lab machines.

Much of the material here is adapted from S Programming, by Venables and Ripley (2000), an excellent
book on the details of the S and R languages that goes into far more detail than I do here.

1 R objects

Commands in R are either expressions, which are evaluated and printed, or assignments, which store the
result of an evaluation as an object. Arithmetic operations for the most part work very similar to any
calculator (note that # marks the rest of the line as a comment):

(5^2) * (10 - 8)/3 + 1 ## An expression

[1] 17.67

x <- (5^2) * (10 - 8)/3 + 1 ## An assignment

x

[1] 17.67

Note that the value of the expression is now stored in an object called x. This allows us to use it again
in further calculations:

x + 1

[1] 18.67

n <- 50

x/n

[1] 0.3533

Objects can be named using any combination of upper- and lower-case letters, digits 0-9 (provided they
are not in the initial position), and the period. Note that R is case sensitive (x and X refer to two different
objects).

All objects in R have a class, which describes the kind of thing that is stored in the object. For instance,

1

class(x)

[1] "numeric"

tells us that x is storing a numeric object at the moment.

1.1 Functions

R is said to be a functional language, meaning that it is built around calling functions to accomplish tasks:

x <- 1:9 ## Creates a vector of numbers 1, 2, ..., 9

mean(x)

[1] 5

median(x)

[1] 5

sd(x)

[1] 2.739

min(x)

[1] 1

sum(x)

[1] 45

x^2

[1] 1 4 9 16 25 36 49 64 81

sum(x^2)

[1] 285

To get more information about any function in R, just type help(’sd’) or, more compactly, ?sd. To
search the help files for pages mentioning, say, regression, type help.search("regression") or ??regression.
Over time in this course, we’ll see a number of functions in R and how they are used.

Functions typically have a number of options which may either be specified or left to their default values:

x <- rnorm(1000)

y <- rnorm(1000, mean = 3)

hist(c(x, y))

2

Histogram of c(x, y)

c(x, y)

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
10

0
20

0
30

0

hist(c(x, y), col = "gray", border = "white", breaks = 40)

Histogram of c(x, y)

c(x, y)

F
re

qu
en

cy

−2 0 2 4 6

0
20

40
60

80

1.2 Vectors and matrices

The simplest way to create a vector is with c (for concatenate). Vectors are typically either numeric,
character, or logical:

x1 <- c(-0.1, 0.3, -0.9, 0.2, -0.6, -2.3)

x2 <- c("red", "blue", "green", "purple")

x3 <- x1 > 0

x3

[1] FALSE TRUE FALSE TRUE FALSE FALSE

The elements of a vector may be named and then accessed by name:

names(x1) <- c("Justine", "Rachel", "Meng", "Xiuhua", "Whitney", "Paul")

x1

3

Justine Rachel Meng Xiuhua Whitney Paul

-0.1 0.3 -0.9 0.2 -0.6 -2.3

names(x1)

[1] "Justine" "Rachel" "Meng" "Xiuhua" "Whitney" "Paul"

x1["Justine"]

Justine

-0.1

If a vector is arranged into a regular series of rows and columns, it becomes a matrix:

X <- matrix(x1, nrow = 2)

X

[,1] [,2] [,3]

[1,] -0.1 -0.9 -0.6

[2,] 0.3 0.2 -2.3

By default, matrices are filled in by column, but this can be changed:

matrix(x1, nrow = 2, byrow = TRUE)

[,1] [,2] [,3]

[1,] -0.1 0.3 -0.9

[2,] 0.2 -0.6 -2.3

The rows and columns of a matrix can be named using rownames and colnames. Individual elements
of matrices can be accessed with X[i, j]. Arrays further extend this concept, and can have an arbitrary
number of additional dimensions (A[i, j, k]). The dimensions of a matrix or array can be found using
the dim function.

The functions cbind and rbind can be used to join together vectors or matrices column-wise or row-wise:

X1 <- matrix(rnorm(6), ncol = 3)

X2 <- matrix(rnorm(6), ncol = 3)

rbind(X1, X2)

[,1] [,2] [,3]

[1,] 0.1332 1.2593 0.2757

[2,] -0.5580 0.7397 0.2725

[3,] 0.5975 1.7651 2.7919

[4,] 0.4378 -1.5741 -0.8844

cbind(X1, X2)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1332 1.2593 0.2757 0.5975 1.765 2.7919

[2,] -0.5580 0.7397 0.2725 0.4378 -1.574 -0.8844

4

1.3 Lists

Lists are used in R to collect together items of different types. Items in a list may be accessed by number,
such as L[[1]], or by name, as in the following example:

tt <- t.test(1:7, 5:10)

tt

##

Welch Two Sample t-test

##

data: 1:7 and 5:10

t = -3.131, df = 10.99, p-value = 0.009576

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-5.961 -1.039

sample estimates:

mean of x mean of y

4.0 7.5

##

tt$conf.int

[1] -5.961 -1.039

attr(,"conf.level")

[1] 0.95

tt$p.value

[1] 0.009576

1.4 Data frames

A data frame is typically how data sets are stored in R. Like a matrix, a data frame has a regular grid pattern
of rows and columns. However, unlike a matrix (instead, like a list), a data frame is not restricted to contain
only numeric or only character values. Each column of a data frame has its own type, as is typical for real
data (some variables are continuous, others are categorical). Data frames can be constructed directly, but
in this class, it will be more typical to read them in from raw, tab-delimited files:

tips <- read.delim("http://web.as.uky.edu/statistics/users/pbreheny/760/data/tips.txt")

head(tips)

TotBill Tip Sex Smoker Day Time Size

1 18.29 3.76 M Yes Sat Night 4

2 16.99 1.01 F No Sun Night 2

3 10.34 1.66 M No Sun Night 3

4 21.01 3.50 M No Sun Night 3

5 23.68 3.31 M No Sun Night 2

6 24.59 3.61 F No Sun Night 4

class(tips$TotBill)

[1] "numeric"

5

class(tips$Sex)

[1] "factor"

Local addresses can be used as well, either relative to the current directory (getwd) or as an absolute
path. Data frames can have row names in general, although the one above does not. The functions rbind

and cbind can also be used on data frames.
It is often cumbersome to type tips$ repeatedly to access the elements of the data frame. There are two

ways around this: attach and with. The former is permanent (although it can be undone with detach and
thus can sometimes lead to unintended side effects, while the latter only acts temporarily:

with(tips, mean(TotBill))

[1] 19.79

mean(TotBill)

Error: object ’TotBill’ not found

attach(tips)

mean(TotBill)

[1] 19.79

detach(tips)

Note that we can add columns to the data frame after it has been created:

tips$Rate <- with(tips, Tip/TotBill)

1.5 Factors

A factor is a special type of vector used to encode levels of a categorical variable (such as tips$Sex above).

table(tips$Sex)

##

F M

87 157

levels(tips$Sex)

[1] "F" "M"

barplot(table(tips$Day))

6

Fri Sat Sun Thu

0
20

40
60

80

2 Indexing

Elements of a vector can be accessed in five distinct ways – it is often easier to use one method in one
circumstance and a different method in other cicumstances, so the flexibility R provides in this regard is
quite convenient:

• A logical vector: Specifies, for each element, whether or not to include it

• A vector of positive integers: Lists the elements to include

• A vector of negative integers: Lists the elements to exclude

• A vector of names: Lists the elements to include by name

• Empty: Select all components

x1[x1 > 0] ## Logical vector

Rachel Xiuhua

0.3 0.2

x1[1:3] ## Positive integers

Justine Rachel Meng

-0.1 0.3 -0.9

x1[-(5:6)] ## Negative integers

Justine Rachel Meng Xiuhua

-0.1 0.3 -0.9 0.2

x1[c("Whitney", "Meng")] ## Names

Whitney Meng

-0.6 -0.9

x1[]

Justine Rachel Meng Xiuhua Whitney Paul

-0.1 0.3 -0.9 0.2 -0.6 -2.3

7

The last option may seem pointless, but it is necessary among other places when accessing portions of a
matrix or data frame (note that we are specifying a subset of rows, but all the columns):

tips[tips$Tip >= 7,]

TotBill Tip Sex Smoker Day Time Size Rate

25 39.42 7.58 M No Sat Night 4 0.1923

171 50.81 10.00 M Yes Sat Night 3 0.1968

213 48.33 9.00 M No Sat Night 4 0.1862

3 Operations

3.1 Arithmetic

As mentioned above, arithmetic in R generally works as you would expect. One wrinkle worth discussing,
however, is recycling, as illustrated below:

x <- sample(1:10, 3)

y <- sample(1:10, 6)

x

[1] 3 1 9

x + 2 ## Adds 2 to each element of x

[1] 5 3 11

x + x ## Adds x to itself elementwise

[1] 6 2 18

x + y ## Adds x to y elementwise, 'recycling' x

[1] 11 7 19 8 3 12

If the length of y had not been a multiple of the length of x, fractional recycling would have occurred,
with a warning.

Two important logical operators to know about are & (and) and | (or):

x <- TRUE

y <- FALSE

x & y

[1] FALSE

x | y

[1] TRUE

There are dozens of useful functions for arithmetic in R, most of which have obvious names or can easily be
found using help.search: log, exp, sign, sqrt, round, sum, prod, range, sort, intersect, and
many more. Two functions that are perhaps worth mentioning specifically are seq, which generates equally
spaced sequences of numbers, and rep, which is used to repeat an object in various ways:

8

seq(0, 1, 0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0

seq(0, 1, len = 5)

[1] 0.00 0.25 0.50 0.75 1.00

rep(1, 5)

[1] 1 1 1 1 1

rep(1:2, 2)

[1] 1 2 1 2

rep(1:2, c(2, 2))

[1] 1 1 2 2

Finally, it is worth remarking that R has a specific value to represent missing data: NA. For example, take
a look at the data set airquality and note that Ozone has a number of missing values:

sum(is.na(airquality$Ozone))

[1] 37

mean(airquality$Ozone)

[1] NA

mean(airquality$Ozone, na.rm = TRUE)

[1] 42.13

Note that NA is not the same thing as infinity, and it is not the same thing as ”undefined” – those
mathematical concepts have their own representations in R:

1/0

[1] Inf

0/0

[1] NaN

3.2 Matrix and array arithmetic

Arrays may be used in ordinary arithmetic the same way as vectors:

A <- matrix(rpois(12, 3), nrow = 4)

B <- matrix(rpois(12, 3), nrow = 4)

A * B + 2 * A

9

[,1] [,2] [,3]

[1,] 15 14 16

[2,] 16 9 56

[3,] 10 3 8

[4,] 25 10 6

Matrix multiplication is a separate operation:

t(A) %*% B

[,1] [,2] [,3]

[1,] 42 34 54

[2,] 33 20 40

[3,] 57 22 62

crossprod(A, B)

[,1] [,2] [,3]

[1,] 42 34 54

[2,] 33 20 40

[3,] 57 22 62

A %*% B

Error: non-conformable arguments

Finally, it is worth knowing that solve returns the inverse of a matrix (provided, of course, that it is
invertible):

X <- crossprod(A)

X.inv <- solve(X)

X %*% X.inv

[,1] [,2] [,3]

[1,] 1 -4.441e-16 6.661e-16

[2,] 0 1.000e+00 2.442e-15

[3,] 0 -8.882e-16 1.000e+00

3.3 Character operations

R also has a number of functions for computing on strings of characters. Perhaps most importantly, paste,
which pastes together strings:

paste(LETTERS[1:4], 1:4)

[1] "A 1" "B 2" "C 3" "D 4"

paste(LETTERS[1:4], 1:4, sep = "")

[1] "A1" "B2" "C3" "D4"

a <- paste(LETTERS[1:4], 1:4, sep = "-")

nchar(a)

10

[1] 3 3 3 3

substr(a, 1, 2)

[1] "A-" "B-" "C-" "D-"

There are also very powerful search, replace, and match functions like grep, gsub, and match, although
a detailed discussion of them is beyond the scope of this lecture.

3.4 Vectorized calculations

R also offers a number of convenient functions for applying a function to each element of a list, or to each
column of a matrix: apply, tapply, sapply, lapply.

apply(airquality, 2, mean)

Ozone Solar.R Wind Temp Month Day

NA NA 9.958 77.882 6.993 15.804

apply(airquality, 2, mean, na.rm = TRUE)

Ozone Solar.R Wind Temp Month Day

42.129 185.932 9.958 77.882 6.993 15.804

3.5 Probability distributions

In statistics, we are often interested in working with random numbers and probability distributions. To carry
out ”draw n balls from an urn” type of sampling, there is the function sample, which can be done with or
without replacement:

sample(1:10, 5)

[1] 1 8 3 9 6

sample(LETTERS[1:10], 5)

[1] "H" "G" "A" "B" "C"

sample(LETTERS[1:5], 10, replace = TRUE)

[1] "B" "A" "E" "A" "E" "B" "E" "E" "E" "C"

R provides a wide array of functions for working with specific probability distributions as well, and they
are organized in the following systematic manner (using the normal distribution as an example):

• dnorm: The density (i.e., the pdf); for categorical distributions like (dbinom), this returns the mass
function (pmf)

• pnorm: The CDF

• qnorm: The quantile function, or inverse CDF

• rnorm: Generates random numbers from the distribution

The arguments that each distribution takes are, of course, different, but the organization is the same:
there are dpois, ppois, qpois, and rpois that allow you to work with the Poisson distribution, and so on
for all common distributions.

11

4 Writing your own functions

One of the best things about R (perhaps the best thing about R) is how easy it is to write your own functions.
For example, let’s write a function to solve for the least squares regression coefficients (this function is
redundant, of course, as a perfectly good function to do this already exists in R, but it will be a useful
exercise regardless).

ols <- function(XX, yy) {
missing.data <- apply(is.na(XX), 1, any) | is.na(yy)

X <- cbind(Intercept = 1, as.matrix(XX[!missing.data,]))

y <- yy[!missing.data]

solve(crossprod(X)) %*% t(X) %*% y

}
ols(airquality[, -1], airquality$Ozone)

[,1]

Intercept -64.11632

Solar.R 0.05027

Wind -3.31844

Temp 1.89579

Month -3.03996

Day 0.27388

Check against existing R function:

lm(Ozone ~ ., airquality)

##

Call:

lm(formula = Ozone ~ ., data = airquality)

##

Coefficients:

(Intercept) Solar.R Wind Temp Month

-64.1163 0.0503 -3.3184 1.8958 -3.0400

Day

0.2739

##

The ability to write your own functions greatly enhances one’s ability to customize and extend R. In
particular, there are hundreds of extra functions that people have written which are available on the Com-
prehensive R Archive Network (cran.r-project.org). These functions are bundled together into packages
and may be installed with install.packages and loaded with require or library. For example, the
lattice package (by default installed, but not loaded) provides a number of nice tools for plotting:

require(lattice)

xyplot(Tip ~ TotBill | Smoker, data = tips)

12

TotBill

T
ip

2

4

6

8

10

10 20 30 40 50

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●

●

●

●

●●

●

● ●
●●

●
●

●

●

●●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●

● ●
●

●

●●

●

●

●

●

No

10 20 30 40 50

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●●
●

●

● ●
●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

● ●

●●

Yes

5 Control structures

One last topic: control structures are commands that control whether or not to execute other commands, or
whether to repeatedly execute blocks of commands. The if statement is used as follows:

x <- airquality$Ozone

x <- tips$Sex

if (is.numeric(x)) sqrt(x) else stop("Can't take sqrt of things that aren't numbers")

Error: Can’t take sqrt of things that aren’t numbers

The other basic control structure is for, which executes loops:

total <- 0

for (i in 1:10) {
total <- total + i

}
total

[1] 55

6 Example: Running a simulation

To get a sense of how loops used, let’s carry out a brief simulation study investigating the robustness of
Student’s t-test when the variances of the two groups are unequal.

N <- 1000

n <- 10

SD <- 1:10

pW <- pS <- matrix(NA, nrow = N, ncol = length(SD))

for (i in 1:length(SD)) {
print(i)

for (j in 1:N) {
s1 <- rnorm(n)

13

s2 <- rnorm(n, sd = SD[i])

pW[j, i] <- t.test(s1, s2, var.equal = FALSE)$p.value

pS[j, i] <- t.test(s1, s2, var.equal = TRUE)$p.value

}
}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

plot(SD, apply(pW < 0.05, 2, mean), type = "l", lwd = 3, col = "red", ylab = "Type I error rate",

xlab = "Ratio of standard deviations", ylim = c(0, 0.1))

lines(SD, apply(pS < 0.05, 2, mean), lwd = 3, col = "blue")

legend("topleft", col = c("red", "blue"), lwd = 3, legend = c("Welch", "Student"))

abline(h = 0.05, col = "gray")

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Ratio of standard deviations

Ty
pe

 I
er

ro
r

ra
te

Welch
Student

As with any programming language, the only way to learn R is to use R, and certainly, you’ll grow more
familiar with R and learn many more functions as the semester progresses. Hopefully, this document serves
as a useful introduction and reference.

14

