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Introduction

@ Our goal for today is to briefly go over ways to extend the
logistic regression model to the case where the outcome can
have multiple categories (i.e., not binary)

@ We will discuss two approaches:

e Multinomial logistic regression, which makes no assumptions
regarding the relationship between the categories, and is most

appropriate for nominal outcomes
e The proportional odds model, which assumes an ordering to
the categories and is most appropriate for ordinal outcomes
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Notation

We will use the following notation to describe these multi-class
models:
@ Let Y be a random variable that can on one of K discrete
value (i.e., fall into one of K classes)
@ Number the classes 1,..., K
@ Thus, mi = Pr(Y; = 2) denotes the probability that the ith
individual's outcome belongs to the second class

e More generally, m;;, = Pr(Y; = k) denotes the probability that
the ith individual's outcome belongs to the kth class
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The multinomial logistic regression model

@ Multinomial logistic regression is equivalent to the following:

o Let k =1 denote the reference category
o Fit separate logistic regression models for k = 2,..., K,
comparing each outcome to the baseline:

log (ﬂ'ik) _ XZTIBk
i1

@ Note that this will result in K — 1 vectors of regression
coefficients (we don't need to estimate the K'th vector
because ), m, = 1)
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Probabilities and odds ratios

The fitted class probabilities for an observation with explanatory
variable vector x are therefore

. 1
T = A
L+ exp(xTBy)
i
= exp(x” By)

1+ > eXP(XTBl)
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Probabilities and odds ratios

o Like logistic regression, odds ratios in the multinomial model

are easily estimated as exponential functions of the regression
coefficients:

Tk /1
ORw = Fl B /T
exp ((x2 — xl)Tﬁk)
exp ((x2 — x1)7 )
= exp ((x2 — x1)" (B, — B1)

@ In the simple case of changing z; by ¢; and comparing k to
the reference category,

ORy = exp(;8k;)
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Flu vaccine data: Results

@ This model estimates the following odds ratios, comparing
vaccinated to control:

B OR
Moderate 2.24 9.38
Large 222 9.17
@ A test of the null hypothesis that the odds ratios are all 1 is
significant (p = 0.00009)

@ Note: These are the same coefficients, the same ratios
(replacing OR with RR), and the same p-value for the
hypothesis test as the Poisson regression approach
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e Multinomial regression requires the estimation of (K — 1)p
parameters, and assumes nothing about the relationship
between the categories to assist in that estimation

@ This is very flexible of course, but has the potential to lead to
large variability in the estimates, especially when the number
of categories is large

@ A common alternative when the categories are ordered to
assume that the log odds of Y > k is linearly related to the
explanatory variables

@ This is called the proportional odds model, and requires the
estimate of only one regression coefficient per explanatory
variable
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Proportional odds model

@ Specifically, the proportional odds model assumes

<7Tk+---+7rK
log [ ————

T
= +X
1+”_+7Tk_1> Bok B8

@ Thus, we still have to estimate K — 1 intercepts, but only p
linear effects, where p is the number of explanatory variables
(notethat K +p—1< (K —-1)(p+1)if K >2)

@ Note: Writing down the proportional odds model requires us
to modify the notation we've used all semester — so in the
above, x and 3 do not include a term for the intercept
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Proportional odds: Results

The proportional odds model estimates that the odds ratio for

Y € {Moderate, Large} given vaccination is exp(3;) = 6.3;
furthermore, by assumption of the model, this is also the odds ratio
for a large response relative to {Small, Moderate} given vaccination

Multinomial ¢ —— Proportional odds ¢ ——
Small Moderate Large
| | | |
Placebo Vaccine
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Non-linear models

@ Linear and generalized linear models are certainly the most
important class of models, but they are not the only kind of
model

@ For example, we have already alluded to the idea that we
sometimes wish to allow the effect of an explanatory variable
to be a smooth curve rather than a line:

g(pi) = f()
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Non-linear models: Example

Log odds (Asthma)

-3
|

log(CAFO)
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Tree-based models

There are also tree-based models:
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And much more. ..

@ There are many additional
extensions/modifications/alternatives that have been
proposed as well:

Robust regression

Distribution-free methods for inference

Discriminant analysis

Principal component analysis

Methods for dealing with highly correlated explanatory

variables

e Methods for variable selection that avoid the problems of
subset selection

@ These topics form the basis of BST 764: Applied Statistical
Modeling, which | will be teaching next fall
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