Nominal and ordinal logistic regression

Patrick Breheny

April 26

Introduction

- Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome can have multiple categories (i.e., not binary)
- We will discuss two approaches:
- Multinomial logistic regression, which makes no assumptions regarding the relationship between the categories, and is most appropriate for nominal outcomes
- The proportional odds model, which assumes an ordering to the categories and is most appropriate for ordinal outcomes

Notation

We will use the following notation to describe these multi-class models:

- Let Y be a random variable that can on one of K discrete value (i.e., fall into one of K classes)
- Number the classes $1, \ldots, K$
- Thus, $\pi_{i 2}=\operatorname{Pr}\left(Y_{i}=2\right)$ denotes the probability that the i th individual's outcome belongs to the second class
- More generally, $\pi_{i k}=\operatorname{Pr}\left(Y_{i}=k\right)$ denotes the probability that the i th individual's outcome belongs to the k th class

The multinomial logistic regression model

- Multinomial logistic regression is equivalent to the following:
- Let $k=1$ denote the reference category
- Fit separate logistic regression models for $k=2, \ldots, K$, comparing each outcome to the baseline:

$$
\log \left(\frac{\pi_{i k}}{\pi_{i 1}}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{k}
$$

- Note that this will result in $K-1$ vectors of regression coefficients (we don't need to estimate the K th vector because $\sum_{k} \pi_{k}=1$)

Probabilities and odds ratios

The fitted class probabilities for an observation with explanatory variable vector \mathbf{x} are therefore

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{1}{1+\sum_{k} \exp \left(\mathbf{x}^{T} \widehat{\boldsymbol{\beta}}_{k}\right)} \\
& \hat{\pi}_{k}=\frac{\exp \left(\mathbf{x}^{T} \widehat{\boldsymbol{\beta}}_{k}\right)}{1+\sum_{l} \exp \left(\mathbf{x}^{T} \widehat{\boldsymbol{\beta}}_{l}\right)}
\end{aligned}
$$

Probabilities and odds ratios

- Like logistic regression, odds ratios in the multinomial model are easily estimated as exponential functions of the regression coefficients:

$$
\begin{aligned}
\mathrm{OR}_{k l} & =\frac{\pi_{k}}{\pi_{l}}=\frac{\pi_{k} / \pi_{1}}{\pi_{l} / \pi_{1}} \\
& =\frac{\exp \left(\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{T} \boldsymbol{\beta}_{k}\right)}{\exp \left(\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{T} \boldsymbol{\beta}_{l}\right)} \\
& =\exp \left(\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{T}\left(\boldsymbol{\beta}_{k}-\boldsymbol{\beta}_{l}\right)\right)
\end{aligned}
$$

- In the simple case of changing x_{j} by δ_{j} and comparing k to the reference category,

$$
\mathrm{OR}_{k l}=\exp \left(\delta_{j} \beta_{k j}\right)
$$

Flu vaccine data: Results

- This model estimates the following odds ratios, comparing vaccinated to control:

	$\widehat{\boldsymbol{\beta}}$	$\widehat{\mathrm{OR}}$
Moderate	2.24	9.38
Large	2.22	9.17

- A test of the null hypothesis that the odds ratios are all 1 is significant ($p=0.00009$)
- Note: These are the same coefficients, the same ratios (replacing OR with RR), and the same p-value for the hypothesis test as the Poisson regression approach

Proportional odds: Introduction

- Multinomial regression requires the estimation of $(K-1) p$ parameters, and assumes nothing about the relationship between the categories to assist in that estimation
- This is very flexible of course, but has the potential to lead to large variability in the estimates, especially when the number of categories is large
- A common alternative when the categories are ordered to assume that the \log odds of $Y \geq k$ is linearly related to the explanatory variables
- This is called the proportional odds model, and requires the estimate of only one regression coefficient per explanatory variable

Proportional odds model

- Specifically, the proportional odds model assumes

$$
\log \left(\frac{\pi_{k}+\cdots+\pi_{K}}{1+\cdots+\pi_{k-1}}\right)=\beta_{0 k}+\mathbf{x}^{T} \boldsymbol{\beta}
$$

- Thus, we still have to estimate $K-1$ intercepts, but only p linear effects, where p is the number of explanatory variables (note that $K+p-1<(K-1)(p+1)$ if $K>2$)
- Note: Writing down the proportional odds model requires us to modify the notation we've used all semester - so in the above, \mathbf{x} and $\boldsymbol{\beta}$ do not include a term for the intercept

Proportional odds: Results

The proportional odds model estimates that the odds ratio for $Y \in\{$ Moderate, Large $\}$ given vaccination is $\exp \left(\hat{\beta}_{1}\right)=6.3$; furthermore, by assumption of the model, this is also the odds ratio for a large response relative to \{Small, Moderate\} given vaccination

Non-linear models

- Linear and generalized linear models are certainly the most important class of models, but they are not the only kind of model
- For example, we have already alluded to the idea that we sometimes wish to allow the effect of an explanatory variable to be a smooth curve rather than a line:

$$
g\left(\mu_{i}\right)=f\left(x_{i}\right)
$$

Non-linear models: Example

Tree-based models

There are also tree-based models:

And much more. . .

- There are many additional extensions/modifications/alternatives that have been proposed as well:
- Robust regression
- Distribution-free methods for inference
- Discriminant analysis
- Principal component analysis
- Methods for dealing with highly correlated explanatory variables
- Methods for variable selection that avoid the problems of subset selection
- These topics form the basis of BST 764: Applied Statistical Modeling, which I will be teaching next fall

