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Introduction

Our goal for today is to briefly go over ways to extend the
logistic regression model to the case where the outcome can
have multiple categories (i.e., not binary)

We will discuss two approaches:

Multinomial logistic regression, which makes no assumptions
regarding the relationship between the categories, and is most
appropriate for nominal outcomes
The proportional odds model, which assumes an ordering to
the categories and is most appropriate for ordinal outcomes
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Notation

We will use the following notation to describe these multi-class
models:

Let Y be a random variable that can on one of K discrete
value (i.e., fall into one of K classes)

Number the classes 1, . . . ,K

Thus, πi2 = Pr(Yi = 2) denotes the probability that the ith
individual’s outcome belongs to the second class

More generally, πik = Pr(Yi = k) denotes the probability that
the ith individual’s outcome belongs to the kth class
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The multinomial logistic regression model

Multinomial logistic regression is equivalent to the following:

Let k = 1 denote the reference category
Fit separate logistic regression models for k = 2, . . . ,K,
comparing each outcome to the baseline:

log

(
πik
πi1

)
= xT

i βk

Note that this will result in K − 1 vectors of regression
coefficients (we don’t need to estimate the Kth vector
because

∑
k πk = 1)
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Probabilities and odds ratios

The fitted class probabilities for an observation with explanatory
variable vector x are therefore

π̂1 =
1

1 +
∑

k exp(x
T β̂k)

π̂k =
exp(xT β̂k)

1 +
∑

l exp(x
T β̂l)
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Probabilities and odds ratios

Like logistic regression, odds ratios in the multinomial model
are easily estimated as exponential functions of the regression
coefficients:

ORkl =
πk
πl

=
πk/π1
πl/π1

=
exp

(
(x2 − x1)

Tβk

)
exp ((x2 − x1)Tβl)

= exp
(
(x2 − x1)

T (βk − βl)
)

In the simple case of changing xj by δj and comparing k to
the reference category,

ORkl = exp(δjβkj)
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Flu vaccine data: Results

This model estimates the following odds ratios, comparing
vaccinated to control:

β̂ ÔR

Moderate 2.24 9.38
Large 2.22 9.17

A test of the null hypothesis that the odds ratios are all 1 is
significant (p = 0.00009)

Note: These are the same coefficients, the same ratios
(replacing OR with RR), and the same p-value for the
hypothesis test as the Poisson regression approach
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Proportional odds: Introduction

Multinomial regression requires the estimation of (K − 1)p
parameters, and assumes nothing about the relationship
between the categories to assist in that estimation

This is very flexible of course, but has the potential to lead to
large variability in the estimates, especially when the number
of categories is large

A common alternative when the categories are ordered to
assume that the log odds of Y ≥ k is linearly related to the
explanatory variables

This is called the proportional odds model, and requires the
estimate of only one regression coefficient per explanatory
variable
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Proportional odds model

Specifically, the proportional odds model assumes

log

(
πk + · · ·+ πK
1 + · · ·+ πk−1

)
= β0k + xTβ

Thus, we still have to estimate K − 1 intercepts, but only p
linear effects, where p is the number of explanatory variables
(note that K + p− 1 < (K − 1)(p+ 1) if K > 2)

Note: Writing down the proportional odds model requires us
to modify the notation we’ve used all semester – so in the
above, x and β do not include a term for the intercept
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Proportional odds: Results

The proportional odds model estimates that the odds ratio for
Y ∈ {Moderate, Large} given vaccination is exp(β̂1) = 6.3;
furthermore, by assumption of the model, this is also the odds ratio
for a large response relative to {Small,Moderate} given vaccination
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Linear and generalized linear models are certainly the most
important class of models, but they are not the only kind of
model

For example, we have already alluded to the idea that we
sometimes wish to allow the effect of an explanatory variable
to be a smooth curve rather than a line:

g(µi) = f(xi)
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There are also tree-based models:
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And much more. . .

There are many additional
extensions/modifications/alternatives that have been
proposed as well:

Robust regression
Distribution-free methods for inference
Discriminant analysis
Principal component analysis
Methods for dealing with highly correlated explanatory
variables
Methods for variable selection that avoid the problems of
subset selection

These topics form the basis of BST 764: Applied Statistical
Modeling, which I will be teaching next fall
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