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Overdispersion

One of the defining characteristics of Poisson regression is its
lack of a scale parameter: E(Y ) = Var(Y ), and no parameter
is available to adjust that relationship

In practice, when working with Poisson regression, it is often
the case that the variability of yi about λ̂i is larger than what
λ̂i predicts

This implies that there is more variability around the model’s
fitted values than is consistent with the Poisson distribution
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Overdispersion (cont’d)

The term for this phenomenon is overdispersion

Data for which this phenomenon manifests itself are often
called “overdispersed”, although as we will see, it is perhaps
better to refer to the model as overdispersed, not the data

There are two common approaches to correcting for
overdispersion:

Quasi-likelihood
Negative binomial regression
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Tinkering with the score

Recall that the score arising from a Poisson regression model is

∂`

∂θ
=
∑
i

{yi − λ̂i}

where θ = log(λ), the canonical parameter

Note, of course, that there is no scale parameter, which would
show up in the denominator on the right hand side

Now suppose we add one:

∂`

∂θ
=
∑
i

yi − λ̂i
φ
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Implications of our tinkering

Recall that Var(Y ) = φV (µ); thus, we now have a parameter
that allows the variance to be larger or smaller than the mean
by a multiplicative factor φ

This will not change β̂, of course

However, it will affect inference, since

β̂
.∼ N

(
β, φ(XTWX)−1

)
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Quasi-likelihood

So what distribution is this, that gives rise to this score?

There isn’t one (at least, not one for which you can write
down the distribution in closed form)

This approach, where you modify the score directly and never
actually specify a distribution, is known as quasi-likelihood
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Quasi-likelihood: Estimation of scale

Typically, the scale parameter φ is estimated using the
method of moments estimator

φ̂ =
X2

n− p

To use this approach in R, one can specify
family=quasipoisson; in SAS, one can add a PSCALE

option to the model statement
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Quasi-likelihood: Belgian AIDS data

For our Belgian AIDS data, φ̂ = 6.7, implying that the
variance was nearly 7 times larger than that implied by the
Poisson distribution

Again, the fit is the same

However, our standard errors are
√
6.7 ≈ 2.6 times larger
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Quasi-likelihood: Belgian AIDS data (cont’d)
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Drawbacks of quasi-likelihood

The quasi-Poisson approach is attractive for several reasons,
but its big drawback is that lacks a log-likelihood

This prevents you from using any of the likelihood-based tools
we have discussed for GLMs: likelihood ratio tests, AIC/BIC,
deviance explained, deviance residuals

An alternative approach that allows all those maximum
likelihood tools is based on the negative binomial distribution
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The negative binomial distribution

The negative binomial distribution has other uses in
probability and statistics, but for our purposes we can think
about it as arising from a two-stage hierarchical process:

Z ∼ Gamma(θ, θ)

Y |Z ∼ Poisson(λZ)

The marginal distribution of Y is then negative binomial, with

E(Y ) = λ

Var(Y ) = λ+ λ2/θ

Thus, like the Poisson distribution, the negative binomial has
support only on the positive integers, but unlike the Poisson,
its variance is larger than its mean
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Negative binomial and exponential family

Note, however, that the negative binomial distribution is not a
member of the exponential family

Thus, the theory and fitting procedures we have developed for
GLMs do not directly apply here

For example, there is no “canonical link”; however, it is
customary to employ a log link to make negative binomial
regression look like Poisson regression
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Negative binomial: Mean-variance relationship

For the Belgian AIDS data, θ̂ = 19.2, implying the following
mean-variance relationship:
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Negative binomial: Estimate

This leads to the following estimate:
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Remarks

By any reasonable assessment, the negative binomial
estimates here are worse than the Poisson fit – and certainly
drastically worse than the quadratic Poisson model

However, its “goodness of fit” measures are much better

This is why I remarked earlier that it’s wrong to think of the
data as overdispersed – if the data show more variability than
the model can explain, the most likely explanation is a bad
model

The quadratic Poisson fit shows no overdispersion (the
residuals are actually slightly “underdispersed”)
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Remarks (cont’d)

The key concept here is that residual variance is caused by
two things: random variation and systematic bias in the model

Many analysts have the mistaken view that quasi-Poisson or
negative binomial regression “automatically” fixes the
overdispersion problem

This is a dangerous misconception – systematic bias in the
model should take far greater priority than modeling the
random error

Quasi-Poisson or negative binomial should be thought of more
as a last resort to fixing overdispersion – the first step is fixing
the systematic component of the model
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Poisson regression for contingency tables

Another use for Poisson regression is to analyze contingency
tables

Recall the results of the Salk vaccine trial:

Polio cases per
Size of group 100,000 children

Treatment 200,000 28
Control 200,000 71
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Logistic vs. Poisson

One may consider two sorts of GLMs for this data:

A logistic regression model, in which

log

(
πi

1− πi

)
= β0 + β1Treatment

A Poisson regression model, in which

log(λi) = β0 + β1Treatment
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Logistic vs. Poisson (cont’d)

Comparing our two estimates (the odds ratio for the logistic
regression model and the rate ratio for the Poisson model), we see
that they are exactly the same:

95% CI
Quantity Model Estimate Lower Upper p

Rate ratio Poisson 2.54 1.87 3.48 5.08× 10−10

Odds ratio Logistic 2.54 1.87 3.48 5.08× 10−10
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Multiple categories

This is an interesting result to be aware of, as the Poisson
distribution is more readily extended to multiple outcome
categories than the binomial distribution is

For example, our textbook contains the following data from a
study of a new influenza vaccine, where the outcome was
antibody levels, categorized as small/moderate/large:

Antibody levels
Small Moderate Large

Placebo 25 8 5
Vaccine 6 18 11
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Testing for association

We can model these six counts as Poisson random variables
with offset n0 = 38 for the placebo group and n1 = 35 for the
vaccine group, then test the null hypothesis that the
small/moderate/large rates are the same for the vaccine group
as they are for the placebo group

Assuming we parameterize the model in the usual way, this
amounts to a test of the interaction term between antibody
levels and group

A likelihood ratio test of the full model in which each cell has
its own Poisson rate vs. the restricted model in which the
rates are the same in each group points is highly significant
(p = 0.00009), indicating that we are unlikely to have seen
such a large antibody response in the vaccine group due to
chance alone
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Remarks

In this case, we could just have used a χ2 or Fisher’s Exact
Test to accomplish the same thing

The advantage of the Poisson model in general is that it
allows us to build more complicated models with additional
explanatory variables, and to model continuous variables using
linear trends

In practice, these models become unwieldy rather quickly as
we try to add complexity

Next time, we’ll talk about ways to extend logistic regression
to the multi-category case
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