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Residuals

Count data

@ Count data is another common type of data in observational
and epidemiological studies

@ This type of data naturally arises from studies investigating
the incidence or mortality of diseases in a population

@ The Poisson distribution is a natural choice to model the
distribution of such data

o As we will see, it is also sometimes convenient to model
cohort studies using the Poisson distribution
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Residuals

Poisson regression

@ As with the binomial distribution leading to logistic regression,
a simple Poisson model is quite limited

e We want to allow each sampling unit (person, county, etc.) to
have a unique rate parameter )\;, depending on the
explanatory variables

@ The random and systematic components are as follows:

e Random component: y; ~ Pois();)
o Systematic component: 7; = x! 3
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Poisson regression: Link function

@ Recall that the canonical link for the Poisson distribution is
the log link

@ Thus,

log(\i) = n;
Ai = exp(m;)

@ Note again that the canonical link ensures that A\; > 0, as it
must be for the Poisson distribution
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The model
nd inf

Belgian AIDS data

As a first example of Poisson regression, consider the following
data on the number of new cases of AIDS in Belgium, 1981-1993:
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Modeling the Belgian AIDS data

@ Consider the following simple model:

n; = Bo + B1Year

@ As we have remarked previously, this is equivalent to fitting
the exponential growth model

Ai = vexp(dt;),

where By = log(vy) and 31 = ¢

@ Exponential growth models are reasonable in the early stages
of an epidemic
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e Fitting these models (as you know from the homework) can
be accomplished via an iteratively reweighted least squares
algorithm, with the reweighting step

e Furthermore (as you also know from the homework), we can
carry out inference according to the Wald approximation

B~N(B,(XTWX)™)

@ We can then transform estimates and confidence intervals to
get inference on the X scale, just as we did for logistic
regression
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Poisson regression in SAS/R

e Fitting these models in SAS and R is straightforward

@ In SAS,
PROC GENMOD DATA=aids;
MODEL Cases = Year / DIST=P0I;
RUN;
e InR
glm(Cases~Year,aids,family=poisson)
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Likelihood ratio intervals and tests

@ Again, the default output is Wald-style inference

@ To obtain likelihood ratio tests and confidence intervals in
SAS, one can add the options LRCI and TYPE3 to the MODEL
statement

@ In R, the confint function again produces likelihood ratio
intervals, while likelihood ratio tests can be carried out by
fitting the full model (£fit) and the reduced model (£it0),
then submitting

anova(fitO,fit,test="Chisq")

Patrick Breheny BST 760: Advanced Regression



The mode
Fitting and inference
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Pearson residuals

@ As with logistic regression, there are two commonly used
types of residuals for Poisson regression: Pearson residuals
and deviance residuals

@ Pearson residuals are straightforward:

@ Note that if we call y; the observed quantity and \i the
expected quantity, we have

Z 2 _ (Obs — Exp)?

Exp

9

the usual x? test statistic
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Fitting and i
Residuals

Deviance

@ Before we derive the deviance residuals, we need to revise the
informal, oversimplified definition of deviance that | provided
earlier

@ Deviance is defined as twice the difference in log-likelihood
between a model and an optimal model for which f; = y; for
all observations; denoting these quantities £ and £y.x:

D = 2(bax — £)

@ This detail was not relevant to our earlier uses of deviance, as
for the Bernoulli and normal distributions, £, = 0

@ This is not the case for the Poisson distribution, however

Patrick Breheny BST 760: Advanced Regression



Rates and offsets

Deviance residuals

@ For the Poisson distribution,

di = si\/2{uilog(ui /M) — (i — A},

where you may recall that s; was the sign of y; — i

@ The deviance is D = Y, d?, although if the model has an
intercept, then Y. y; = > . A;, and the deviance simplifies to

D=2 y;log(yi/X)
7
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Fitting and i )
Residuals

@ The concepts of leverage, leave-one-out diagnostics, Cook's
distance, and Ag are the same as they were for logistic
regression

@ Recall once again that both types of residuals can be
standardized by dividing by /1 — Hy;

@ Let's take a look at what these diagnostics say about our
Poisson regression fit to the Belgian AIDS data
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The mo
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Residuals and diagnostics

and offs

Belgian AIDS data: Leverage

Leverage

0.4 -

03

02

0.

,_.
I

0.4

°

1982

T T
1984 1986

Patrick Breheny

T
1988

Year
BST 76

T T
1990 1992

Advanced Regression



The mo

£ din
Residuals and diagnostics
3 and offs

Cook's distance

0,|||...|I|I|| L

T T T T T T
1982 1984 1986 1988 1990 1992

Year

Patrick Breheny BST 760: Advanced Regression



The mo

£ din
Residuals and diagnostics
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Residuals and diagnostics
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@ How effective is our model at predicting the outcome?

@ As with logistic regression, two measures are commonly used:
reduction in squared error and deviance explained

@ The reduction in squared error is
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Fitting and in nce
Residuals and diagnostics
Rates and offsets

Measures of predictive power

@ Once again, both measures can be adjusted for number of
parameters by dividing the numerator by n — p and the
denominator by n — 1

@ In our example:

R*> R, DE DEy
1981-1993  Linear  0.880 0.869 0.907  0.899
1981-1991  Linear ~ 0.973 0.970 0.964  0.960
1981-1993 Quadratic 0.988 0.986 0.989  0.987

@ AIC also strongly favors a quadratic model (166 vs. 97)
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Poisson rates

@ In more complicated models, the meaning of A often requires
additional thought

@ For example, we often think of Poisson events occurring with
a certain rate

o If this is the case, we need to be careful about specifying what
we are estimating: a rate per what?

@ For example, if we are modeling motor vehicle crashes, we
may be estimating a rate per 1,000 population, a rate per
1,000 licensed drivers, a rate per 1,000 registered motor
vehicles, or a rate per 100,000 miles traveled
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British doctor study

@ A kind of rate that is particularly common in epidemiological
studies is a rate per person-years of follow-up

@ For example, consider the classic study by Doll et al. in which
all British male doctors were sent a questionnaire about their
age and whether they smoked tobacco

@ The doctors were then followed up for a number of years to
see whether or not they had died from coronary heart disease
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Offsets

@ Suppose, then, that we wish to model A(x), the rate per
1,000 person-years of follow-up, given the explanatory
variables Age and Smoking

o Now,

E(Y;) =t

where t; denotes the person-years of follow-up for
observation i
@ This implies that

log(u;) = log(t;) + log(A;)
= log(t;) + ni;

thus, the usual relationship between pu; and the linear
predictor is offset by the amount log(t;)
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Rates and offsets

Including offsets in R/SAS

@ Both R and SAS allow you to specify an offset

@ In SAS, one simply adds the option OFFSET= to the model
statement

@ Similarly, in R, one specifies the offset= option in the glm
function

@ Note: In SAS, one must compute the offset in a separate
DATA step, while in R, one can submit code such as
offset=log(PersonYears/1000)
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Rates and offsets

Estimating linear combinations

@ We can then estimate the rate per 1,000 person-years of
follow-up for any category we choose using either the
ESTIMATE statement in SAS or the predict function in R

@ For example, with SAS’s default coding of class variables, the
following statement estimates the rate of CHD deaths for
smokers aged 45-54:

ESTIMATE ’45-54 smokers’ Intercept 1
Age 01000
Smoking 0 1;

@ In R, we can set up a data frame consisting of all the linear
combinations we are interested in, and then submit
predict(fit,df,type="response")

@ Note: In SAS, the offset is set to zero; in R, you specify the
offset variable
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Rates and offsets

Estimated rates

@ The estimated rates from our Poisson regression model:

Smokers Non-smokers

35-44 0.52 0.36
45-54 2.29 1.60
55-64 7.17 5.03
65-74 14.78 10.37
75-84 20.97 14.71

o Note that, by fitting a model with no interaction between age
and smoking, we enforce that the rate ratio (RR) between
smokers and non-smokers are the same in each age group
(0.52/0.36 = --- = 20.97/14.71 = 1.43)
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Rate ratios

@ Rate ratios are a common way of describing the coefficients of
a Poisson regression model, on a scale that is more
interpretable

@ This is exactly analogous to the use of odds ratios to describe
logistic regression models; assume we have two observations
with explanatory variable vectors x; and xo:

)\2 N exp(ﬁg)

Ao exp(in)
= exp((x2 — x1)"B)
@ In other words, if compare two types of individuals who are

otherwise the same, but differ by one unit in z;, the ratio of
their event rates is exp(3;)
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Rates and offsets

Rate ratios (examples)

@ So, for example, the 1.43 rate ratio we observed earlier arises
from

RR = eXp(BSmoking) = 03545 = 143

@ In the Belgian AIDS data, every five years the rate of new
AIDS cases was increasing by 275%:

RR = exp(BBYear) = ¢2(02021) _ 9 75

@ Males 65-74 are at 6.5 times higher risk of death from CHD
than males 45-54:

RR = exp(Bes—ra — Pas-—sa) = 5390514840 _ g 5
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Comments/connections

@ Suppose we had county-level data, and were modeling
occurrences of disease; should we treat the outcome as
Poisson with a rate per population, or binomial with n; the
number of people in county i?

@ The binomial distribution is better for small sample sizes, but
if n is large and the disease is rare, it doesn’t really matter;
the binomial is well-approximated by the Poisson in this case

@ Poisson regression is an adequate, but not ideal tool for
analyzing cohort studies; if one has detailed individual-level
data, one can apply the more sophisticated approaches that
have been developed in the field of survival analysis
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