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Count data

Count data is another common type of data in observational
and epidemiological studies

This type of data naturally arises from studies investigating
the incidence or mortality of diseases in a population

The Poisson distribution is a natural choice to model the
distribution of such data

As we will see, it is also sometimes convenient to model
cohort studies using the Poisson distribution
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Poisson regression

As with the binomial distribution leading to logistic regression,
a simple Poisson model is quite limited

We want to allow each sampling unit (person, county, etc.) to
have a unique rate parameter λi, depending on the
explanatory variables

The random and systematic components are as follows:

Random component: yi ∼ Pois(λi)
Systematic component: ηi = xT

i β
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Poisson regression: Link function

Recall that the canonical link for the Poisson distribution is
the log link

Thus,

log(λi) = ηi

λi = exp(ηi)

Note again that the canonical link ensures that λi > 0, as it
must be for the Poisson distribution
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Belgian AIDS data

As a first example of Poisson regression, consider the following
data on the number of new cases of AIDS in Belgium, 1981–1993:
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Modeling the Belgian AIDS data

Consider the following simple model:

ηi = β0 + β1Year

As we have remarked previously, this is equivalent to fitting
the exponential growth model

λi = γ exp(δti),

where β0 = log(γ) and β1 = δ

Exponential growth models are reasonable in the early stages
of an epidemic
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Model fitting and inference

Fitting these models (as you know from the homework) can
be accomplished via an iteratively reweighted least squares
algorithm, with the reweighting step

w
(m)
i = λ̂

(m)
i

Furthermore (as you also know from the homework), we can
carry out inference according to the Wald approximation

β̂ ∼ N
(
β, (XTWX)−1

)
We can then transform estimates and confidence intervals to
get inference on the λ scale, just as we did for logistic
regression
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Poisson regression in SAS/R

Fitting these models in SAS and R is straightforward

In SAS,

PROC GENMOD DATA=aids;

MODEL Cases = Year / DIST=POI;

RUN;

In R

glm(Cases~Year,aids,family=poisson)
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Likelihood ratio intervals and tests

Again, the default output is Wald-style inference

To obtain likelihood ratio tests and confidence intervals in
SAS, one can add the options LRCI and TYPE3 to the MODEL

statement

In R, the confint function again produces likelihood ratio
intervals, while likelihood ratio tests can be carried out by
fitting the full model (fit) and the reduced model (fit0),
then submitting

anova(fit0,fit,test="Chisq")
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Results
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Pearson residuals

As with logistic regression, there are two commonly used
types of residuals for Poisson regression: Pearson residuals
and deviance residuals

Pearson residuals are straightforward:

ri =
yi − λ̂i√

λ̂i

Note that if we call yi the observed quantity and λ̂i the
expected quantity, we have∑

i

r2i =
(Obs− Exp)2

Exp
,

the usual χ2 test statistic
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Deviance

Before we derive the deviance residuals, we need to revise the
informal, oversimplified definition of deviance that I provided
earlier

Deviance is defined as twice the difference in log-likelihood
between a model and an optimal model for which µ̂i = yi for
all observations; denoting these quantities ` and `max:

D = 2(`max − `)

This detail was not relevant to our earlier uses of deviance, as
for the Bernoulli and normal distributions, `max = 0

This is not the case for the Poisson distribution, however
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Deviance residuals

For the Poisson distribution,

di = si

√
2{yi log(yi/λ̂i)− (yi − λ̂i)},

where you may recall that si was the sign of yi − λ̂i
The deviance is D =

∑
i d

2
i , although if the model has an

intercept, then
∑

i yi =
∑

i λ̂i, and the deviance simplifies to

D = 2
∑
i

yi log(yi/λ̂i)
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Additional residuals/diagnostics

The concepts of leverage, leave-one-out diagnostics, Cook’s
distance, and ∆β are the same as they were for logistic
regression

Recall once again that both types of residuals can be
standardized by dividing by

√
1−Hii

Let’s take a look at what these diagnostics say about our
Poisson regression fit to the Belgian AIDS data
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Belgian AIDS data: Leverage
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Belgian AIDS data: Influence
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Belgian AIDS data: ∆β (Year)
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Belgian AIDS data: Residuals
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Measures of predictive power

How effective is our model at predicting the outcome?

As with logistic regression, two measures are commonly used:
reduction in squared error and deviance explained

The reduction in squared error is

R2 = 1−
∑

i(yi − λ̂i)2∑
i(yi − ȳ)2

The explained deviance is

1− D

D0
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Measures of predictive power

Once again, both measures can be adjusted for number of
parameters by dividing the numerator by n− p and the
denominator by n− 1

In our example:

R2 R2
adj DE DEadj

1981–1993 Linear 0.880 0.869 0.907 0.899
1981–1991 Linear 0.973 0.970 0.964 0.960
1981–1993 Quadratic 0.988 0.986 0.989 0.987

AIC also strongly favors a quadratic model (166 vs. 97)
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Belgian AIDS data: Quadratic model
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Poisson rates

In more complicated models, the meaning of λ often requires
additional thought

For example, we often think of Poisson events occurring with
a certain rate

If this is the case, we need to be careful about specifying what
we are estimating: a rate per what?

For example, if we are modeling motor vehicle crashes, we
may be estimating a rate per 1,000 population, a rate per
1,000 licensed drivers, a rate per 1,000 registered motor
vehicles, or a rate per 100,000 miles traveled
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British doctor study

A kind of rate that is particularly common in epidemiological
studies is a rate per person-years of follow-up

For example, consider the classic study by Doll et al. in which
all British male doctors were sent a questionnaire about their
age and whether they smoked tobacco

The doctors were then followed up for a number of years to
see whether or not they had died from coronary heart disease
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Offsets

Suppose, then, that we wish to model λ(x), the rate per
1,000 person-years of follow-up, given the explanatory
variables Age and Smoking

Now,

E(Yi) = tiλi,

where ti denotes the person-years of follow-up for
observation i

This implies that

log(µi) = log(ti) + log(λi)

= log(ti) + ηi;

thus, the usual relationship between µi and the linear
predictor is offset by the amount log(ti)
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Including offsets in R/SAS

Both R and SAS allow you to specify an offset

In SAS, one simply adds the option OFFSET= to the model
statement

Similarly, in R, one specifies the offset= option in the glm

function

Note: In SAS, one must compute the offset in a separate
DATA step, while in R, one can submit code such as
offset=log(PersonYears/1000)
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Estimating linear combinations

We can then estimate the rate per 1,000 person-years of
follow-up for any category we choose using either the
ESTIMATE statement in SAS or the predict function in R

For example, with SAS’s default coding of class variables, the
following statement estimates the rate of CHD deaths for
smokers aged 45–54:

ESTIMATE ’45-54 smokers’ Intercept 1

Age 0 1 0 0 0

Smoking 0 1;

In R, we can set up a data frame consisting of all the linear
combinations we are interested in, and then submit

predict(fit,df,type="response")

Note: In SAS, the offset is set to zero; in R, you specify the
offset variable
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Estimated rates

The estimated rates from our Poisson regression model:

Smokers Non-smokers

35–44 0.52 0.36
45–54 2.29 1.60
55–64 7.17 5.03
65–74 14.78 10.37
75–84 20.97 14.71

Note that, by fitting a model with no interaction between age
and smoking, we enforce that the rate ratio (RR) between
smokers and non-smokers are the same in each age group
(0.52/0.36 = · · · = 20.97/14.71 = 1.43)
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Rate ratios

Rate ratios are a common way of describing the coefficients of
a Poisson regression model, on a scale that is more
interpretable

This is exactly analogous to the use of odds ratios to describe
logistic regression models; assume we have two observations
with explanatory variable vectors x1 and x2:

λ̂2

λ̂1
=

exp(η̂2)

exp(η̂1)

= exp((x2 − x1)
T β̂)

In other words, if compare two types of individuals who are
otherwise the same, but differ by one unit in xj , the ratio of

their event rates is exp(β̂j)
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Rate ratios (examples)

So, for example, the 1.43 rate ratio we observed earlier arises
from

RR = exp(β̂Smoking) = e0.3545 = 1.43

In the Belgian AIDS data, every five years the rate of new
AIDS cases was increasing by 275%:

RR = exp(5β̂Year) = e5(0.2021) = 2.75

Males 65–74 are at 6.5 times higher risk of death from CHD
than males 45–54:

RR = exp(β̂65--74 − β̂45--54) = e3.3505−1.4840 = 6.5
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Comments/connections

Suppose we had county-level data, and were modeling
occurrences of disease; should we treat the outcome as
Poisson with a rate per population, or binomial with ni the
number of people in county i?

The binomial distribution is better for small sample sizes, but
if n is large and the disease is rare, it doesn’t really matter;
the binomial is well-approximated by the Poisson in this case

Poisson regression is an adequate, but not ideal tool for
analyzing cohort studies; if one has detailed individual-level
data, one can apply the more sophisticated approaches that
have been developed in the field of survival analysis
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