Poisson Regression

Patrick Breheny

April 19

Patrick Breheny BST 760: Advanced Regression

Count data

- Count data is another common type of data in observational and epidemiological studies
- This type of data naturally arises from studies investigating the incidence or mortality of diseases in a population
- The Poisson distribution is a natural choice to model the distribution of such data
- As we will see, it is also sometimes convenient to model cohort studies using the Poisson distribution

Poisson regression

- As with the binomial distribution leading to logistic regression, a simple Poisson model is quite limited
- We want to allow each sampling unit (person, county, etc.) to have a unique rate parameter λ_i, depending on the explanatory variables
- The random and systematic components are as follows:
 - Random component: $y_i \sim \text{Pois}(\lambda_i)$
 - Systematic component: $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Poisson regression: Link function

- Recall that the canonical link for the Poisson distribution is the log link
- Thus,

 $\log(\lambda_i) = \eta_i$ $\lambda_i = \exp(\eta_i)$

• Note again that the canonical link ensures that $\lambda_i > 0$, as it must be for the Poisson distribution

Belgian AIDS data

As a first example of Poisson regression, consider the following data on the number of new cases of AIDS in Belgium, 1981–1993:

Year

Modeling the Belgian AIDS data

• Consider the following simple model:

$$\eta_i = eta_0 + eta_1$$
Year

• As we have remarked previously, this is equivalent to fitting the exponential growth model

$$\lambda_i = \gamma \exp(\delta t_i),$$

where $\beta_0 = \log(\gamma)$ and $\beta_1 = \delta$

• Exponential growth models are reasonable in the early stages of an epidemic

Model fitting and inference

• Fitting these models (as you know from the homework) can be accomplished via an iteratively reweighted least squares algorithm, with the reweighting step

$$w_i^{(m)} = \hat{\lambda}_i^{(m)}$$

• Furthermore (as you also know from the homework), we can carry out inference according to the Wald approximation

$$\widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\boldsymbol{\beta}, (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1}\right)$$

• We can then transform estimates and confidence intervals to get inference on the λ scale, just as we did for logistic regression

Poisson regression in SAS/R

- Fitting these models in SAS and R is straightforward
- In SAS,

```
PROC GENMOD DATA=aids;
MODEL Cases = Year / DIST=POI;
RUN;
```

In R

```
glm(Cases~Year,aids,family=poisson)
```

Likelihood ratio intervals and tests

- Again, the default output is Wald-style inference
- To obtain likelihood ratio tests and confidence intervals in SAS, one can add the options LRCI and TYPE3 to the MODEL statement
- In R, the confint function again produces likelihood ratio intervals, while likelihood ratio tests can be carried out by fitting the full model (fit) and the reduced model (fit0), then submitting

```
anova(fit0,fit,test="Chisq")
```

Results

Pearson residuals

- As with logistic regression, there are two commonly used types of residuals for Poisson regression: Pearson residuals and deviance residuals
- Pearson residuals are straightforward:

$$r_i = \frac{y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

• Note that if we call y_i the observed quantity and $\hat{\lambda}_i$ the expected quantity, we have

$$\sum_i r_i^2 = \frac{(\mathsf{Obs} - \mathsf{Exp})^2}{\mathsf{Exp}},$$

the usual χ^2 test statistic

Deviance

- Before we derive the deviance residuals, we need to revise the informal, oversimplified definition of deviance that I provided earlier
- Deviance is defined as twice the difference in log-likelihood between a model and an optimal model for which $\hat{\mu}_i = y_i$ for all observations; denoting these quantities ℓ and ℓ_{max} :

$$D = 2(\ell_{\max} - \ell)$$

- This detail was not relevant to our earlier uses of deviance, as for the Bernoulli and normal distributions, $\ell_{max} = 0$
- This is not the case for the Poisson distribution, however

Deviance residuals

For the Poisson distribution,

$$d_i = s_i \sqrt{2\{y_i \log(y_i/\hat{\lambda}_i) - (y_i - \hat{\lambda}_i)\}},$$

where you may recall that s_i was the sign of $y_i - \hat{\lambda}_i$

• The deviance is $D = \sum_i d_i^2$, although if the model has an intercept, then $\sum_i y_i = \sum_i \hat{\lambda}_i$, and the deviance simplifies to

$$D = 2\sum_{i} y_i \log(y_i/\hat{\lambda}_i)$$

Additional residuals/diagnostics

- The concepts of leverage, leave-one-out diagnostics, Cook's distance, and Δ_β are the same as they were for logistic regression
- Recall once again that both types of residuals can be standardized by dividing by $\sqrt{1-H_{ii}}$
- Let's take a look at what these diagnostics say about our Poisson regression fit to the Belgian AIDS data

Belgian AIDS data: Leverage

Belgian AIDS data: Influence

Belgian AIDS data: Δ_{β} (Year)

Belgian AIDS data: Residuals

Measures of predictive power

- How effective is our model at predicting the outcome?
- As with logistic regression, two measures are commonly used: reduction in squared error and deviance explained
- The reduction in squared error is

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{\lambda}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

• The explained deviance is

$$1 - \frac{D}{D_0}$$

Measures of predictive power

- Once again, both measures can be adjusted for number of parameters by dividing the numerator by n-p and the denominator by n-1
- In our example:

		R^2	$R_{\rm adj}^2$	DE	$DE_{\rm adj}$
1981–1993	Linear	0.880	0.869	0.907	0.899
1981–1991	Linear	0.973	0.970	0.964	0.960
1981–1993	Quadratic	0.988	0.986	0.989	0.987

• AIC also strongly favors a quadratic model (166 vs. 97)

Belgian AIDS data: Quadratic model

Poisson rates

- $\bullet\,$ In more complicated models, the meaning of λ often requires additional thought
- For example, we often think of Poisson events occurring with a certain *rate*
- If this is the case, we need to be careful about specifying what we are estimating: a rate per what?
- For example, if we are modeling motor vehicle crashes, we may be estimating a rate per 1,000 population, a rate per 1,000 licensed drivers, a rate per 1,000 registered motor vehicles, or a rate per 100,000 miles traveled

British doctor study

- A kind of rate that is particularly common in epidemiological studies is a rate per person-years of follow-up
- For example, consider the classic study by Doll *et al.* in which all British male doctors were sent a questionnaire about their age and whether they smoked tobacco
- The doctors were then followed up for a number of years to see whether or not they had died from coronary heart disease

Offsets

• Suppose, then, that we wish to model $\lambda(\mathbf{x})$, the rate per 1,000 person-years of follow-up, given the explanatory variables Age and Smoking

• Now,

$$\mathcal{E}(Y_i) = t_i \lambda_i,$$

where t_i denotes the person-years of follow-up for observation \boldsymbol{i}

• This implies that

$$log(\mu_i) = log(t_i) + log(\lambda_i)$$
$$= log(t_i) + \eta_i;$$

thus, the usual relationship between μ_i and the linear predictor is *offset* by the amount $\log(t_i)$

Including offsets in R/SAS

- Both R and SAS allow you to specify an offset
- In SAS, one simply adds the option OFFSET= to the model statement
- Similarly, in R, one specifies the offset= option in the glm function
- Note: In SAS, one must compute the offset in a separate DATA step, while in R, one can submit code such as offset=log(PersonYears/1000)

Estimating linear combinations

- We can then estimate the rate per 1,000 person-years of follow-up for any category we choose using either the ESTIMATE statement in SAS or the predict function in R
- For example, with SAS's default coding of class variables, the following statement estimates the rate of CHD deaths for smokers aged 45–54:

```
ESTIMATE '45-54 smokers' Intercept 1
Age 0 1 0 0 0
```

```
Smoking 0 1;
```

- In R, we can set up a data frame consisting of all the linear combinations we are interested in, and then submit predict(fit,df,type="response")
- Note: In SAS, the offset is set to zero; in R, you specify the offset variable

Estimated rates

• The estimated rates from our Poisson regression model:

	Smokers	Non-smokers
35–44	0.52	0.36
45–54	2.29	1.60
55–64	7.17	5.03
65–74	14.78	10.37
75–84	20.97	14.71

• Note that, by fitting a model with no interaction between age and smoking, we enforce that the rate ratio (RR) between smokers and non-smokers are the same in each age group $(0.52/0.36 = \cdots = 20.97/14.71 = 1.43)$

Rate ratios

- Rate ratios are a common way of describing the coefficients of a Poisson regression model, on a scale that is more interpretable
- This is exactly analogous to the use of odds ratios to describe logistic regression models; assume we have two observations with explanatory variable vectors \mathbf{x}_1 and \mathbf{x}_2 :

$$\begin{aligned} \frac{\hat{\lambda}_2}{\hat{\lambda}_1} &= \frac{\exp(\hat{\eta}_2)}{\exp(\hat{\eta}_1)} \\ &= \exp((\mathbf{x}_2 - \mathbf{x}_1)^T \widehat{\boldsymbol{\beta}}) \end{aligned}$$

• In other words, if compare two types of individuals who are otherwise the same, but differ by one unit in x_j , the ratio of their event rates is $\exp(\hat{\beta}_j)$

Rate ratios (examples)

 So, for example, the 1.43 rate ratio we observed earlier arises from

$$RR = \exp(\hat{\beta}_{\texttt{Smoking}}) = e^{0.3545} = 1.43$$

• In the Belgian AIDS data, every five years the rate of new AIDS cases was increasing by 275%:

$$RR = \exp(5\hat{\beta}_{\texttt{Year}}) = e^{5(0.2021)} = 2.75$$

 Males 65–74 are at 6.5 times higher risk of death from CHD than males 45–54:

$$RR = \exp(\hat{\beta}_{65-74} - \hat{\beta}_{45-54}) = e^{3.3505 - 1.4840} = 6.5$$

Comments/connections

- Suppose we had county-level data, and were modeling occurrences of disease; should we treat the outcome as Poisson with a rate per population, or binomial with n_i the number of people in county *i*?
- The binomial distribution is better for small sample sizes, but if n is large and the disease is rare, it doesn't really matter; the binomial is well-approximated by the Poisson in this case
- Poisson regression is an adequate, but not ideal tool for analyzing cohort studies; if one has detailed individual-level data, one can apply the more sophisticated approaches that have been developed in the field of *survival analysis*