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The WCGS data

Today we will look at issues of model selection and measuring
the predictive power of a model in logistic regression

Our data set for today comes from the Western Collaborative
Group Study (WCGS), an observational cohort study of 3,154
men tracked from 1960-1969

All of the men were initially free of heart disease; the primary
outcome of the study was whether or not they developed
coronary heart disease (CHD) by the end of the study
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WCGS data: Primary aim

The primary aim of the WCGS study was to test the
hypothesis that individuals with a “Type A” personality
(tightly wound) are more likely to develop CHD than
individuals with a “Type B” (laid back) personality

The study found that Type A individuals were more than
twice as likely to develop heart disease than Type B
(OR = 2.4, p < 0.0001)

Could this be due to confounding?
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Potential confounders

In an effort to rule out confounding, the investigators also
collected data not only on TypeA but also on the following
potentially confounding factors:

Age

Height

Weight

SBP: Systolic blood pressure
DBP: Diastolic blood pressure
Chol: Serum cholesterol
Ncigs: No. of cigarettes smoked/day
Arcus: Arcus senilis, a whitish ring around the iris (a marker
of high cholesterol)

Our goal for today is to see whether or not any of these
factors affect our conclusion that the odds of developing CHD
are 2.4 times greater for Type A individuals than for Type B
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R2 for logistic regression?

In linear regression, R2 is a very useful quantity, describing the
fraction of the variability in the response that the explanatory
variables can explain

There are a number of ways one can define an analog to R2 in
the logistic regression case, but none of them are as widely
useful as R2 in linear regression
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Correlation approach

One approach is to compute the correlation r between the
observed outcomes {yi} and the fitted values {π̂i}
In linear regression, the square of this correlation is R2

Thus, one reasonable way to define an R2 for logistic
regression is to square r, the Pearson correlation between the
observed and fitted values
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Squared error approach

Another approach is to measure the reduction in squared error:

R2 = 1−
∑

i(yi − π̂i)2∑
i(yi − ȳ)2

This approach has the advantage that it looks exactly like R2

for linear regression, and we can therefore easily adjust for the
number of parameters:

R2
adj = 1−

∑
i(yi − π̂i)2/(n− p)∑
i(yi − ȳ)2/(n− 1)
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A closer look at squared error assumptions

These two preceding measures have the advantage of working
on the scale of the original variable and being easy to interpret

However, one might question the logic of treating all (yi − π̂i)
differences equally

Compare π̂i = .9 with π̂i = .99 for an observation with yi = 0

The squared differences are similar (0.992 = 0.9801,
0.92 = 0.81) despite the fact that Pr(yi = 0) differs by a
factor of 10 for the two models
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Deviance vs. squared error

This is the rationale behind considering differences on the
likelihood scale (i.e., instead of looking at the reduction in
squared error, we look at the reduction in deviance)

In our example, the contribution to the deviance by the two
estimates are

−2 log(.1) = 4.6

−2 log(.01) = 9.2,

a two-fold difference, as opposed to the 20% difference as
measured by squared error
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Explained deviance

Letting D0 denote the null deviance (i.e., the deviance of the
intercept-only, or simple binomial, model), another attempt at
an R2-like measure is

D0 −D
D0

= 1− D

D0
,

the explained deviance (often reported as a percentage)

Because deviance roughly follows a χ2
n−p distribution, it can

also be adjusted for number of parameters:

1− D/(n− p)
D0/n
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Other approaches

Other approaches involve looking at all pairs for which
π̂i > π̂j and recording whether or not yi and yj differ

If yi = 1 and yj = 0, then our model gets a point; if yi = 0
and yj = 1, then our model loses a point (nothing happens if
yi and yj are the same)

This is the idea behind Kendall’s τ , Somer’s D, and Goodman
and Kruskal’s γ

There are several other approaches too, so almost a dozen
altogether (thankfully, they all have the property that the lie
between 0 and 1, with 1 being the best)
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WCGS example

To get a sense of how these measures look, let’s compare three
models:

Model 1: η = β0 + β1TypeA

Model 2: η = β0 + β1TypeA + β2Age + β3Chol

Model 3: η = β0 + all explanatory variables
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WCGS example (cont’d)

Model
1 2 3

r2 0.013 0.047 0.069
R2 0.013 0.047 0.069
R2

adj 0.012 0.046 0.066

DE 0.023 0.081 0.112
DEadj 0.023 0.080 0.110
τ 0.031 0.066 0.076
γ 0.407 0.448 0.510
Somer’s D 0.206 0.444 0.514
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Classification

An alternative way of thinking about how well a model fits the
data is with respect to classification

This approach forces the model to predict whether yi = 0 or
yi = 1 based on π̂i

The obvious approach is to predict yi = 1 if π̂i > 0.5,
although other cutoffs could be used if, for example, the cost
of false positive is larger than the cost of a false negative (or
vice versa)
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Classification table

A π̂i > 0.5 would not work very well for the WCGS data, since
CHD is rare enough (8% of the men developed CHD) that
virtually no one in data set is at such high risk that he is
actually more likely to develop CHD than not

Using the Donner party data instead, let’s compare the Age
only model with the model which has Age, Sex, and an
interaction:

Age

Died Survived
π̂i < 0.5 15 9
π̂i ≥ 0.5 10 11

Age*Sex

Died Survived
π̂i < 0.5 24 11
π̂i ≥ 0.5 1 9

Patrick Breheny BST 760: Advanced Regression



Measures of predictive power
Model selection

Introduction
R2-type measures
Classification measures

ROC Curves

For the WCGS data, we might instead consider varying the
cutoff to which π̂i is compared

As we do so, we will change both the false positive rate:

Pr(ŷ = 1|y = 0)

and the true positive rate:

Pr(ŷ = 1|y = 1)

The true positive rate is also called the sensitivity and 1 minus
the false positive rate is also called the specificity

As we vary the cutoff from 0 to 1, plotting these two
quantities will create a curve known as the receiver operating
characteristic (ROC) curve
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ROC curves for WCGS data
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Basic principles of model selection

The basic principles of model selection that we learned about for
linear also apply to GLMs:

Simple models have low variance, but risk bias

More complicated models reduce bias and fit the sample data
better, but can be highly variable and do not necessarily
generalize to the population better

Automatic model selection approaches and criteria can be
informative, provided that we use the results cautiously and
continue to think about the scientific meaning and plausibility
of the models under consideration
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GLMs vs. linear regression

The two most important things that change are:

Not all of the model selection criteria that we derived for
linear regression apply to GLMs

Quick shortcuts for best subset selection are no longer
available, so best subset selection rapidly becomes infeasible
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AIC and BIC

The model selection criteria that are most often used for
GLMs are AIC and BIC

Recall that these criteria were likelihood-based, and therefore
extend readily to GLMs with no modification:

AIC = −2`+ 2p

= D + 2p

BIC = −2`+ p log(n)

= D + p log(n)
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Choosing among models I

Applying AIC and BIC to our three models from earlier:

Model
1 2 3

AIC 1744.3 1645.0 1601.3
BIC 1756.5 1669.2 1661.8

Both approaches agree that the most complex model is the best
despite its extra parameters, although BIC is much less
enthusiastic about the difference between models 2 and 3
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Choosing among models II

A particular advantage of AIC and BIC is that the models
they compare do not have to be nested

For example, instead of including height and weight in the
model separately, we might consider combining them into
BMI:

AIC BIC

Height+Weight 1601.3 1661.8
Height*Weight 1602.5 1669.1

BMI 1603.1 1657.6
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Choosing among link functions

AIC and BIC can also be used to guide other aspects of the
model, such as the link function

For example, for the WCGS data, AIC/BIC both select Φ−1

(the so-called probit link) over the canonical logit link (1601
vs. 1597 for AIC, 1662 vs. 1658 for BIC)

In reality, however, many statisticians would still not abandon
the canonical link here, as the probit link function would leave
us unable to estimate odds ratios in a simple manner
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Conclusion

So are Type A personalities more likely to develop CHD?

Adjusting for the potential confounders changes our findings
quantitatively, but not qualitatively in this case:

ÔR =1.5 1.9 2.6 (p < 0.0001)

Of course, this answer is not necessarily definitive, as there are
lots of other ways to adjust for the confounders (interactions,
nonlinear effects, etc.), as well as the possibility of hidden
confounders, such as diet
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