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Introduction

After a model has been fit, it is wise to check the model to
see how well it fits the data

In linear regression, these diagnostics were build around
residuals and the residual sum of squares

In logistic regression (and all generalized linear models), there
are two kinds of residuals (and thus, two kinds of residual sum
of squares)
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Pearson residuals

The first kind is called the Pearson residual, and is based on
the idea of subtracting off the mean and dividing by the
standard deviation

For a logistic regression model,

ri =
yi − π̂i√
π̂i(1− π̂i)

Note that, if we ignore the fact that π̂i is an estimate based
on yi, then ri has mean 0 and variance 1
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Pearson residuals

The preceding approach treats each observation as a single
binary outcome

An alternative approach is to treat all subjects with the same
covariate pattern as a single observation, following a binomial
distribution:

ri =
yi − niπ̂i√
niπ̂i(1− π̂i)

,

where ni subjects share the ith covariate pattern, and yi of
them experience the event of interest

The distinction between the two is important only if a number
of subjects share the same covariate pattern (this will not
come up if, for example, one of your explanatory variables is
continuous)
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Deviance residuals

The other approach is based on the contribution of each point
to the likelihood

For logistic regression,

` =
∑
i

{yi log π̂i + (1− yi) log(1− π̂i)}

By analogy with linear regression, the terms should correspond
to −1

2r
2
i ; this suggests the following residual, called the

deviance residual:

di = si
√
−2 {yi log π̂i + (1− yi) log(1− π̂i)},

where si = 1 if yi = 1 and si = −1 if yi = 0
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Deviance residuals (cont’d)

If we consider observations with the same covariate patterns
to generate a single binomial response, the deviance residual
becomes

di = si

√
2

{
yi log

yi
niπ̂i

+ (ni − yi) log
ni − yi
ni − niπ̂i

}
,

where si = 1 if yi > niπ̂i and si = −1 if yi < niπ̂i
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Deviance and Pearson’s statistic

Each of these types of residuals can be squared and added
together to create an RSS-like statistic

Combining the deviance residuals produces the deviance:

D =
∑

d2i

which is, in other words, −2`

Combining the Pearson residuals produces the Pearson
statistic:

X2 =
∑

r2i
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Goodness of fit tests

One might that both statistics could be compared to the
χ2
n−p distribution as a rough goodness of fit test

However, this test does not actually work very well

Several modifications have been proposed, including an early
test proposed by Hosmer and Lemeshow that remains popular
and is available in SAS

Other, better tests have been proposed as well (an extensive
comparison was made by Hosmer et al. (1997))
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The hat matrix for GLMs

As you may recall, in linear regression it was important to
divide by

√
1−Hii to account for the leverage that a point

had over its own fit

Similar steps can be taken for logistic regression; here, the
projection matrix is

H = W1/2X(XTWX)−1XTW1/2,

where W1/2 is the diagonal matrix with W
1/2
ii =

√
wi
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Properties of the hat matrix

In logistic regression, π̂ 6= Hy – no matrix can satisfy this
requirement, as logistic regression does not produce linear
estimates

However, it has many of the other properties that we
associate with the linear regression projection matrix:

r = (I−H)r
H is symmetric
H is idempotent
HW1/2X = W1/2X and XTW1/2H = XTW1/2

where r is the vector of Pearson residuals
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Standardized residuals

The diagonal elements of H are again referred to as the
leverages, and used to standardize the residuals:

rsi =
ri√

1−Hii

dsi =
di√

1−Hii

Generally speaking, the standardized deviance residuals tend
to be preferable because they are more symmetric than the
standardized Pearson residuals, but both are commonly used
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Leave-one-out diagnostics

You may recall that in linear regression there were a number
of diagnostic measures based on the idea of leaving
observation i out, refitting the model, and seeing how various
things changed (residuals, coefficient estimates, fitted values)

You may also recall that for linear regression, it was not
actually necessary to refit the model n times; explicit
shortcuts based on H were available

The same idea can be extended to generalized linear models,
although we cannot take advantage of the explicit-solution
shortcuts without making approximations
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One-step approximations

The resulting approximate statistics are said to be one-step
approximations to the true values

The issue is that we can quickly calculate the one-step
approximations based on the current weights {wi} without
refitting anything, but to calculate the exact value, we would
need to go through n IRLS algorithms

The approximations are usually pretty good, although if one
point has a very large influence, then the approximation may
be quite different from the true value
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One-step approximations

One-step approximations allow us to quickly calculate the following
diagnostic statistics for GLMs:

Studentized deleted residuals

∆β (for assessing the change in individual coefficients)

Cook’s distance (for assessing overall influence over the model
fit)
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Leverage

To get a sense of the information these statistics convey, let’s look
at various plots of the Donner party data, starting with leverage:
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Cook’s Distance
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Delta-beta (for effect of age)
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Residuals / proportional influence
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