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Introduction

As a precursor to fitting generalized linear models, let’s first
deal with the case of a normally distributed outcome with
unequal variances

Consider the data set statin which contains (simulated)
records on diabetic patients, collected from 130 practices
(hospitals, clinics, etc.) in Pennsylvania

The outcome variable was the average LDL cholesterol level of
the diabetic patients, and the explanatory variable was the
percent of diabetic patients at the practice who are on statin
drugs

Only practice-level (i.e., not individual-level) data was
available
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Ordinary least squares fit

When we fit a simple linear regression model, we see that the
correlation between Statin and LDL is 0.1, and is not
significant (p = .27)

However, this model is treating each practice with equal
weight, despite the fact that some practices (such as
Philadelphia hospitals) have nearly 2500 patients while others
(small rural clinics) have only 11 diabetic patients

Clearly, the results for the large practices are less variable; it
therefore stands to reason that they should have greater
weight in the model
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Weighted least squares

Recall that the negative log-likelihood of the model under the
assumption of normality is∑

i

(yi − µi)2

2σ2i
;

note that we are no longer assuming equal variance

In particular, since the outcome in this case is an average, it is
reasonable to assume σ2i = σ2/ni, where ni is the number of
patients in clinic i

Thus, the maximum likelihood estimate will minimize the
weighted residual sum of squares,∑

i

(yi − µi)2

2σ2/ni
∝
∑
i

wi(yi − µi)2,

where wi = ni
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Solving for the WLS estimate

In matrix form, we need to minimize

(y −Xβ)TW(y −Xβ),

where W is a diagonal matrix of weights

Taking the derivative with respect to β, we find that the
solution is

β̂ = (XTWX)−1XTWy
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Sampling distribution of β̂

Note that β̂ is once again a linear combination of {yi}, and
therefore normally distributed:

β̂ ∼ N
(
β, σ2(XTWX)−1

)
;

recall that Var(y) = σ2W−1

The subsequent derivation of confidence intervals and tests is
similar to what we have seen before

This model can be fit in R using the weights= option, or in
SAS with a WEIGHT statement
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Results

Estimated effect of Statin:

Estimate SE t p

βStatin -0.19 0.07 2.78 0.01

Taking into account the heteroskedasticity, we now have a
highly significant test and more accurate estimate (the data
was simulated with a true βStatin = −0.2)

Additionally, the (weighted) correlation increased from 0.1 to
0.24
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Introduction: Unknown weights

The preceding approach (known as weighted least squares, or
WLS) easily handles unequal variances for problems in which
the relative variances of the outcomes are known (note that it
was not necessary to know the actual variance, just the
relative ratios)

However, what about situations where the variance seems to
increase with the mean?

Here, we don’t know the means ahead of time (otherwise we
wouldn’t need to fit a model) and therefore we don’t know the
appropriate weights, either
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Hand speed data

For example, consider a study in which the investigator measured
hand speed (time it takes to remove a bolt from an S-shaped iron
rod) for a number of subjects of various ages:

Age

T
im

e
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4

5

6

7

20 40 60 80
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Remarks

There are a number of interesting things going on in this data set:

Older individuals take longer to complete the task than
younger ones

However, the trend does not seem to be linear

As mean hand speed goes up, so does variability
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Iterative reweighting

Roughly speaking, it seems that SD ∝ µ, so Var(y) ∝ µ2

Of course, we don’t know µ

Once we fit the model, we have estimates for {µi} and
therefore, for {wi}, where ŵi = µ̂−2

i

However, once we change {wi}, we change the fit, and thus
we change {µ̂i}, which changes {wi}, and so on. . .
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Iterative reweighting (cont’d)

Consider, then, the following approach to model fitting:

(1) Fit the model, obtaining β̂ and µ̂
(2) Use µ̂ to recalculate w
(3) Repeat steps (1) and (2) until the model stops changing (i.e.,

until convergence)

This approach is known as the iteratively reweighted least
squares (IRLS) algorithm
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An iterative loop in R

One way to implement this algorithm is with

fit.w <- lm(Time~Age,handspeed)

for (i in 1:20)

{

w <- 1/fit.w$fitted.values^2

fit.w <- lm(Time~Age,handspeed,weights=w)

}

This implementation assumes that 20 iterations is enough to
achieve convergence

This is fine for this case, but in general, it is better to write a
repeat or while loop which checks for convergence at each
iteration and terminates the loop when convergence is reached
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OLS vs. WLS

A comparison of the two fits (black=OLS, blue=WLS):
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OLS vs. WLS (cont’d)

Note that by taking heteroskedasticity into account, the slope
is lowered somewhat, as the regression line is less influenced
by the highly variable points on the right

Furthermore, note that by more accurately modeling the
distribution of the outcome, the standard deviation of our
estimate is reduced from 0.0018 to 0.0013

Consequently, we even obtain a larger test statistic, despite
the fact that the estimate is closer to zero

Furthermore, R2 increases from 0.41 to 0.49
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An inappropriate variance model

Note that this only improves our results if we model the
variance accurately

Suppose we were to iteratively reweight according to ŵi = µ̂2i
Fitting this model, we more than double our standard error
and decrease R2 from 0.41 to 0.30
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Quadratic model

Finally, we might also consider a quadratic fit (black=OLS,
blue=WLS):
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The fit is actually very similar in this case, although once again we
achieve reductions in standard error and an improvement in R2

from 0.49 to 0.53 Patrick Breheny BST 760: Advanced Regression
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