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Introduction

In the second half of this course, we will focus on modeling data
which do not necessarily follow a N(µi, σ

2) distribution, including:

Outcomes with unequal variance

Binary and categorical outcomes

Discrete and count outcomes

Outcomes with skewed distributions

This generalization does come at a cost, however – we can no
longer derive closed form solutions for regression coefficients and
inference is only approximate
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Generalized linear models

The basic structure of a generalized linear model (GLM) is as
follows:

Yi ∼ some distribution with mean µi, where

g(µi) = xTi β

A GLM therefore consists of three components:

The systematic component, xT
i β

The random component: the specified distribution for Y
The link function g

Patrick Breheny BST 760: Advanced Regression



Generalized linear models
Exponential families

Properties of exponential families

The systematic component

Because the systematic component is specified in terms of
xTi β, the general ideas and concepts that we have learned so
far with respect to linear modeling carry over to generalized
linear modeling

This means that model specification and interpretation is the
same, with the exception that we now have to think about the
link and distribution of the outcome

The quantity ηi = xTi β is referred to as the linear predictor
for observation i
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The link

In principle, g could be any function linking the linear
predictor to the distribution of the outcome variable

In practice, we also place the following restrictions on g

g must be smooth (i.e., differentiable)
g must be monotonic (i.e., invertible)
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The random component

Again in principle, we could specify any distribution for the
outcome variable

However, the mathematics of generalized linear models work
out nicely only for a special class of distributions called the
exponential family of distributions

This is not as big a restriction as it sounds, however, as most
common statistical distributions fall into this family, such as
the normal, binomial, Poisson, gamma, and others
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Example #1

Most of today’s lecture will involve working out the
properties, terminology, and notation of exponential families,
but before we do so, let’s explore two examples of problems
that can be cast into the GLM framework

In the early stages of a disease epidemic, the rate at which
new cases occur increases exponentially through time

Thus, if µi is the expected number of new cases on day ti, a
model of the form

µi = γ exp(δti)

might be appropriate
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Example #1 (cont’d)

If we take the log of both sides,

log(µi) = log(γ) + δti

= β0 + β1ti

Furthermore, since the outcome is a count, the Poisson
distribution seems reasonable

Thus, this model fits into the GLM framework with a Poisson
outcome distribution, a log link, and a linear predictor of
β0 + β1ti
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Example #2

The rate of capture of prey, yi, by a hunting animal increases
as the density of prey, xi, increases, but will eventually level
off as the predator has as much food as it can eat
A suitable model is

µi =
αxi
h+ xi

This model is not linear, but taking the reciprocal of both
sides,

1

µi
=
h+ xi
αxi

= β0 + β1
1

xi
Because the variability in prey capture likely increases with the
mean, we might use a GLM with a reciprocal link and a
gamma distribution
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Definition

A distribution falls into the exponential family if its
distribution function can be written as

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
,

where the parameter of interest θ = h(µ) depends on the
expected value of y, φ is a scale parameter, and b and c are
arbitrary functions

This representation can be slightly generalized, but the above
definition is sufficiently general for all commonly used GLMs

As we will see, if a distribution can be written in this manner,
maximum likelihood estimation and inference are greatly
simplified and can be handled in a unified framework
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Example: Poisson distribution

To get a sense of how the exponential family works, let’s work
out the representation of a few common families, starting with
the Poisson:

f(y|µ) = µye−µ

y!

This can be rewritten as

f(y|µ) = exp{y logµ− µ− log y!},

thereby falling into the exponential family with θ = logµ and
b(θ) = eθ

Note that the Poisson does not have a scale parameter
(φ = 1); for the Poisson distribution, the variance is
determined entirely by the mean
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Example: Normal distribution

Other distributions such as the normal, however, require a scale
parameter:

f(y|µ) = 1√
2πσ2

exp

{
−(y − µ)2

2σ2

}
= exp

{
yµ− 1

2µ
2

σ2
− 1

2

[
y2

σ2
+ log(2πσ2)

]}
,

which is in the exponential family with θ = µ, b(θ) = 1
2θ

2, and
φ = σ2
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Example: Binomial distribution

Finally, let’s consider the binomial distribution with n = 1:

f(y|µ) = µy(1− µ)1−y

= exp

{
y log

(
µ

1− µ

)
+ log(1− µ)

}
,

which is in the exponential family with

θ = log

(
µ

1− µ

)
b(θ) = log(1 + eθ)

Note that, like the Poisson, the binomial distribution does not
require a scale parameter

The more general n > 1 case is also in the exponential family
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Score statistic for exponential families

What is so special about exponential families?

Much of maximum likelihood estimation revolves around the
derivative of the log-likelihood, called the score

Consider the score for a distribution in the exponential family:

U =
∂

∂θ
`(θ, φ|y)

=
y − b′(θ)

φ
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Properties of the score statistic

The score has the following properties, which you proved in
Biometrics II:

E(U) = 0

Var(U) = −E(U ′)

Recall that the variance of U is also called the information
and denoted J

For the exponential family,

Var(U) = φ−1b′′(θ)
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Mean and variance for exponential families

Thus, for the exponential family,

E(Y ) = b′(θ)

Var(Y ) = φb′′(θ)

Note that the variance of Y depends on both the scale
parameter and on a function of the mean (because θ is a
function of µ), with b controlling the relationship between
mean and variance

Thus, if we write b′′(θ) as a function of µ, with V (µ) = b′′(θ),
we have

Var(Y ) = φV (µ)

Var(U) = φ−1V (µ)
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The canonical link

Although in principle, we can arbitrarily specify the
distribution and link function g, note that if we choose g = h
(recall that h was defined as θ = h(µ)), then

θi = h(µi) = h(h−1(ηi)) = ηi = xTi β

In other words, it ensures that the systematic component of
our model is modeling the parameter of interest (sometimes
called the natural parameter) in the distribution

There is, therefore, a reason to prefer this link (the canonical
link) when specifying the model
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Benefits of canonical links

Although one is not required to use the canonical link, they tend to
have nice properties, both statistically and in terms of
mathematical convenience:

They simplify the derivation of the MLE, as we will see in the
next lecture

They ensure that many properties of linear regression still
hold, such as the fact that

∑
i ri = 0

They ensure that µ stays within the range of the outcome
variable
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Example: Binomial distribution

As an example of this last point, consider the canonical link
for the binomial distribution:

g(x) = log

(
x

1− x

)
µ = g−1(η)

=
eη

1 + eη

As η → −∞, µ→ 0, while as η →∞, µ→ 1

On the other hand, if we had chosen, say, the identity link, µ
could lie below 0 or above 1, clearly impossible for the
binomial distribution
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