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Introduction

In today’s lecture, we present the basic results of asymptotic
likelihood theory, and show how these allow us to construct
confidence intervals and carry out hypothesis tests for
maximum likelihood estimates (such as regression coefficients
in a GLM)

We will be carrying out heuristic derivations of these results,
rather than constructing rigorous asymptotic proofs

To that end, we will use the symbol
.∼ to mean, “is

approximately distributed as”, or more specifically, that the
use of this approximate distribution is justified asymptotically
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Sampling distribution of the score statistic

The standard result we will begin with is the sampling
distribution of the score statistic:

U
.∼ N(0, J),

where we recall that J is the information
The above is for a single parameter; in the multiparameter
setting,

u
.∼ N(0,J),

where J = Var(u) is the information matrix
The above approximations are derived from the asymptotic
relationship

1√
n
u

d−→ N(0,J1),

where J1 is the expected information from a single observation
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The information matrix

For a single observation, recall that

Var(U1) = −E(U ′1)

Thus, in multiple dimensions,

Var(u1) = −E
(
∂

∂θ
u1

)
,

or in other words,

J1 = −E(H1),

where H is the Hessian matrix
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The information matrix (cont’d)

If we have multiple observations, and those observations are
independent,

L(θ) =

n∏
i=1

Li(θ)

`(θ) =

n∑
i=1

`i(θ)

Furthermore, because derivatives and expectations can be
distributed through the summation, we have

J = nJ1
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Observed vs. Fisher information

Furthermore,

J = nJ1

= −nE(H1)

When performing inference (i.e., when we have actual data),
it is usually more convenient to simply evaluate the Hessian at
the observed data, rather than take the expectation over the
data you would have expected to see

The former is called the observed information and the latter
the expected information or Fisher information
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Observed vs. Fisher information

To be more specific:

J(θ) = −nE {H1(θ|Y )} (Fisher)

Ĵ(θ) = −H(θ|y) (Observed)

Note that in the first equation, Y is a random scalar; in the
second, it is a fixed vector

For the purposes of this class, the distinction between the two
is not terribly important (our approximate results hold
regardless of which information is used), and I will use J
generically to refer to either kind of information unless
otherwise noted
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Quadratic approximation to the likelihood

The preceding results are a useful place to start, but what we
really want to know is the sampling distribution of our
estimates

Consider, then, approximating the likelihood as a function of θ

Proposition: The quadratic Taylor series approximation to
the likelihood at the MLE is given by

`(θ) ≈ `(θ̂) + 1

2
(θ − θ̂)TH(θ − θ̂)
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Sampling distribution of MLEs

Using this approximation, the score is

u ≈ H(θ − θ̂),

and we are ready to prove the following result

Result: The sampling distribution of a maximum likelihood
estimator is approximately normal, with

θ̂
.∼ N(θ,J−1)

More rigorously, it can be shown that under certain regularity
conditions,

√
n(θ̂ − θ)

d−→ N(0,J−11 )
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Wald approach
Likelihood ratio approach

Sampling distribution of β̂

The regression coefficients from a GLM are MLEs; it is thus
straightforward to show the following

Result: The sampling distribution of the regression
coefficients from a GLM are approximately normal, with

β̂
.∼ N

(
β, φ(XTWX)−1

)
The usual caveat applies: the above is based on the
assumption that the model holds
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Confidence intervals and hypothesis tests

We are now in a position to derive confidence intervals and
hypothesis tests in manner entirely analogous to our earlier
derivations for the linear regression case

Result: Suppose that the model specified by the GLM holds.
Then

β̂j − βj
ŜE

.∼ z,

where ŜE is the square root of φ̂(XTWX)−1jj
Corollary: Suppose that the model specified by the GLM
holds. Then

λT β̂ − λTβ

ŜE

.∼ z,

where ŜE is the square root of φ̂λT (XTWX)−1λ
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Confidence intervals and hypothesis tests (cont’d)

Two details deserve some special attention:

We’re assuming that there is some reasonable way to estimate
φ; the details vary depending on the distribution

The matrix of weights, W, is evaluated at the MLE
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Wald approach

In linear regression, we had exact results, and there was a
clear, unassailable way of conducting hypothesis tests and
constructing confidence intervals

Not so for generalized linear models: our results are
approximate, and there is more than one way to handle the
approximation

The preceding approach, based on taking the asymptotic
normality of the MLE literally, is called the Wald approach,
after Abraham Wald

The resulting procedures are called “Wald confidence
intervals”, “Wald hypothesis tests”, “Wald test statistics”,
etc.
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Shortcoming of the Wald approach

The Wald approach has the advantage of simplicity: all you
need to know is an estimate and its standard error, and you
can construct by hand everything you want to know

However, the Wald approach depends entirely on the
quadratic approximation to the likelihood

If this approximation is poor, the Wald approach will suffer
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The likelihood ratio

A competing approach is based on likelihood ratios

Consider two models: one which depends on a vector of
parameters θ and the other which restricts some subset of
those parameters to have a known value (we refer to the
former as the “full” model and the latter as the “reduced”
model)

Specifically,

θ = (θ(1),θ(2)) (Full)

θ = (θ(1),θ
(2)
0 ) (Reduced),

where θ
(2)
0 is a specified vector of constants
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The likelihood ratio (cont’d)

The likelihood ratio approach, as the name suggests, is based
on the likelihood ratio

λ =
LFull

LReduced
,

or equivalently,

log(λ) = `Full − `Reduced

A standard result of likelihood theory is that

2 log(λ)
.∼ χ2

q ,

where q is the length of θ(2) (typically, the number of
parameters assumed to be zero)
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Likelihood ratio tests and confidence intervals

This result allows us to carry out hypothesis tests by
calculating p = Pr(χ2

q ≥ 2 log(λ))

It also allows us to construct (1− α) confidence intervals by
inverting the above test – i.e., finding the set of parameter

values θ
(2)
0 such that

2
{
`(θ̂)− `

(
θ̂|θ(2) = θ

(2)
0

)}
≤ χ2

α,q,

where Pr(χ2
q ≥ χ2

α,q) = α
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Likelihood ratio vs. Wald

The Wald approach enjoys popularity due to its simplicity
(likelihood ratio confidence intervals are obviously difficult to
construct by hand)

The two approaches often agree quite well

However, there are also situations where the two disagree
dramatically

Tests and confidence intervals based on likelihood ratios are
more accurate, and should always be trusted over the Wald
approach
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