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Introduction

@ We've discussed the ingredients that go into specifying a
generalized linear model

@ In this lecture, we address the question: how do we actually
estimate the regression coefficients?
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Taylor series approximations

@ In generalized linear models, both model fitting (today) and
inference (next lecture) rely heavily on making
linear/quadratic Taylor series approximations

@ Suppose that f(z) is a differentiable function, but is not
necessarily linear and possibly rather complicated

@ A simple approximation to f(x), valid in the neighborhood of
a point xg, is given by

f(x) = f(xo) + f'(x0)(x — x0);

note that this function is linear in ©
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Second-order approximations

@ A more complicated, but more accurate, approximation is
given by

£(&) = flzo) + ' (w0)(w = 20) + 5 (@)@ — 20)*;

a quadratic function in x

@ We could keep going, of course, to higher and higher orders,
but in practice, first and second orders usually suffice

@ Taylor's theorem guarantees that any sufficiently smooth
function can be approximated in this way, and provides
bounds for the error of the approximation
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Multidimensional approximations

@ Taylor series approximations can be conducted in higher
dimensions as well:

f(x) &~ f(x0) + VI (x — %),
f(x) =~ f(xo) + VT(X —xq) + %(x — xO)TH(x —X0),
WhereV:g—iandH:%

@ V is sometimes referred to as the gradient and H as the
Hessian

Patrick Breheny BST 760: Advanced Regression



5 approximations
IRLS

Unique solutions?

Introduction

@ With those preliminaries out of the way, we are now in a
position to estimate the regression coefficients

@ As we mentioned earlier, the reason for restricting ourselves to
the exponential family is that it facilitates maximum likelihood
estimation

@ Unfortunately, we cannot, in general, obtain a closed form
solution for the maximum likelihood estimator

@ However, after making a Taylor series approximation to the
likelihood about the fitted values fi, we obtain an estimator
that is equivalent to the weighted least squares estimate
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Main result

@ Specifically, suppose we are taking a Taylor series
approximation about the fitted values £ resulting from
regression coefficients 3; then

ot —1%T

— X'Wiz-X

where W is a diagonal matrix with elements {1/¢'(1;)} and

z=XB+ Wy — 1) (z is sometimes referred to as the

adjusted response)

@ As a clarification, the value B used to make the approximation
is treated as a constant in the above expression; 3 is the only
variable, and the score equation is linear in 3 after the
approximation
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Iteration

@ As we saw previously, this gives the maximum likelihood
estimate

~(m)
B

= (XTWX) ' XTWz
. ~(m) . ..

@ The superscript on 3 is because this is a case of unknown
weights, where W (and z) will change depending on 3 and
vice versa

@ As we saw earlier, one way to address this problem is to
iterate the process of
reweight—estimate—reweight—estimate—. . . until convergence

e This iteratively reweighted least squares (IRLS) algorithm is
how generalized linear models are fit
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IRLS algorithm: summary

In summary, then, the algorithm goes like this:

(1) Choose an initial value ,@( )

(2) Form=0,1,2,...,
(a) Calculate z and W based on B(m)
(b) Solve for ﬁ( ey

(3) Repeat step (2) until convergence
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The Newton-Raphson algorithm

@ This IRLS algorithm is a special case of a more general
approach to optimization called the Newton-Raphson
algorithm

@ The Newton-Raphson algorithm calculates iterative updates

via

~(m)
B

where u is the score vector and H is the Hessian matrix (the
first and second derivatives of the log-likelihood, respectively),

both of which are evaluated at B(m)

@ It can be shown (homework) that this produces the same
iterative updates as IRLS

~(m+1) .

18 - H71u7
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Weights for the canonical link

e Proposition: If g is the canonical link for the exponential
family, then 1/¢'(1;) = V().

@ In other words, W =V, where V is a diagonal matrix with
elements {V(u;)}

@ The weight matrix W plays a prominent role in inference as
well; this proposition tells us that for the canonical link, W is
entirely determined by the mean-variance relationship
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Unique solutions and rank

@ Recall that, for linear regression, X full rank implied that
there was exactly one unique solution ,@ which minimized the
residual sum of squares

@ A similar result holds for generalized linear models: if X is not
full rank, then there is no unique solution which maximizes
the likelihood
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Additional issues for GLMs

@ However, two additional issues arise in generalized linear
models:
e Although a unique solution exists, the IRLS algorithm is not
guaranteed to find it
e It is possible for the unique solution to be infinite, in which
case the estimates are not particularly useful and inference
breaks down

@ The first issue is uncommon; we will an example of the second
issue in an upcoming lab
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