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Alcohol metabolism data

Our data set for today involves a study of 18 women and 14
men which investigated one aspect of why women exhibit a
lower tolerance for alcohol and develop alcohol-related liver
disease more readily than men

The data set contains the following variables:

Metabol: First-pass metabolism of alcohol in the stomach
(mmol/liter-hour); this is the outcome variable
Gastric: Gastric alcohol dehydrogenase activity in the
stomach (µmol/min/g of tissue)
Sex: Sex of the subject
Alcohol: Whether the subject is alcoholic or not

We will be asking a wide variety of inferential questions about
this data set to illustrate the rich set of quantities we can
estimate and hypotheses we can test with the tools we have
learned so far
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Sex as the explanatory variable

Let’s begin by fitting a simple model, with Sex as the only
explanatory predictor:

E(Metabol) = β0 + β1Male,

where Male is an indicator variable for being male; you could
use Female instead, but recall that you can’t use both

In R, you can fit the above model with lm(Metabol~Sex),
but in PROC REG, you’ll have to manually set up the indicator
variable Male

Alternatively in SAS, you could use PROC GLM with a
CLASS SEX statement, but you would have to specify
SOLUTION to get the parameter estimates
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Thinking about the coefficients

Now let’s think about the model and what the coefficients
mean:

E(Metabol) =

{
β0 if Sex==‘‘Female’’

β0 + β1 if Sex==‘‘Male’’

Thus, β0 is the expected alcohol metabolism for women, while
β1 is the difference in expected alcohol metabolism between
men and women (in this situation, women are sometimes said
to the reference category)

Standard output reports the estimate, ŜE, the test statistic,
and the p-value for each coefficient in the model
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Thinking about the coefficients (cont’d)

The tests in the standard output may or may not be
meaningful

For example, H0 : β1 = 0 is a hypothesis that alcohol
metabolism is the same in males as it is in female

This is an interesting hypothesis to test

The test of H0 : β0 = 0, testing whether alcohol metabolism
in females is 0, on the other hand, is probably meaningless

Patrick Breheny BST 760: Advanced Regression



One-variable models
Two-variable models

Three-variable models

Confidence intervals

Recall where all of the items in the standard output come
from: the estimate comes from (XTX)−1XTy, ŜE comes
from the square root of the diagonal of σ̂2(XTX)−1, the test

statistic is β̂/ŜE, and the p-value comes from the t
distribution with n− p degrees of freedom

Now suppose we want confidence intervals, which are not
reported by default; we could compute them by hand:[

β̂ − tα/2,n−pŜE, β̂ + tα/2,n−pŜE
]

In SAS, we could add a CLB option to the MODEL statement

In R, we could use the confint function, as in

fit <- lm(Metabol~Sex)

confint(fit)
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The t test is a special case of linear regression

As I alluded to in our first lecture, t tests are a special case of
the linear regression model

Note that the two-sample Student’s t test comparing men and
women in terms of alcohol metabolism is the same test as
H0 : β1 = 0; the two have the same test statistic, degrees of
freedom, null distribution and p-value

Note that it is only equivalent to Student’s t test, the “equal
variance” t test; our model assumptions did not allow σ2 to
vary depending on the covariates
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Reparameterizing our model

Finally, let’s explore what happens when we reparameterize
our model as

E(Metabol) = β1Female+ β2Male,

This model is equivalent to the first one, in the sense that all
of its residuals and fitted values are the same, but the
coefficients (and thus, the default hypothesis tests) don’t have
the same meaning

The coefficients are perhaps now easier to interpret, but
neither default hypothesis test is meaningful

In order to test for or estimate the difference between the two
groups, we would need to set up the linear combination λTβ,
where λT = (−1, 1)
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R2 for models without an intercept

One additional note about the reparameterization: note that
the R2 for the first parameterization was only 33%, while that
for the second is 64%

It is clearly illogical, however, to conclude that the second
model fits the data better (since their fitted values are exactly
the same)

The reason for this apparent paradox is that our
decomposition of the variances depended on the presence of
an intercept; without it, R2 is of questionable meaning

So, beware of interpreting R2 for models without an intercept
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Gastric as the explanatory variable

We can also fit one-variable regression models involving
Gastric and Alcohol

A point which may be obvious, but I want to make sure we’re
all clear on: for a numeric variable like Gastric, the
coefficient refers to the effect of a one-unit increase

Because of linearity, it doesn’t matter where that one-unit
increase occurs; the effect of moving from 1 to 2 is exactly
the same as going from 4 to 5

So, for example, if we were to center Gastric by subtracting
off its mean, we would change the value of the intercept, but
β̂1 (and associated inferences) would remain exactly the same
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Recap

To briefly recap our univariate findings:

Alcohol metabolism much higher in men than women

Alcohol metabolism highly positively correlated with gastric
alcohol dehydrogenase

Alcohol metabolism lower in alcoholics, but this was not
significant
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No interactions
Interactions

Male + Alcoholic

Let’s move on to two-variable models, such as:

E(Metabol) = β0 + β1Male+ β2Alcoholic,

We are now estimating the effect of alcoholism while
controlling for sex, and vice versa

Note that alcoholics have an alcohol metabolism 0.65 units
lower than non-alcoholics, but this estimate jumps to 1.5 if we
compare alcoholics to non-alcoholics while holding sex
constant

This is because alcoholics are more likely to be men, which
confounded the univariate analysis, resulting a biased
underestimate

What does the intercept mean now?
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No interactions
Interactions

Male + Gastric

Another two-variable model:

E(Metabol) = β0 + β1Male+ β2Gastric,

Note that males had a metabolism 3 units higher than
females, but that this estimate drops to 1.6 if we compare
males to females who have the same levels of gastric alcohol
dehydrogenase

This is because men tend to have higher alcohol
dehydrogenase activity, which again confounded the univariate
analysis and led to systematic bias, although in this case, it
led to overestimation

What does the intercept mean now?
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No interactions
Interactions

A key assumption

Now, both of these models make a rather important kind of
assumption

Our first model assumed that the effect of alcoholism is the
same for men as it is for women

Our second model assumed that the effect of gastric
dehydrogenase was the same for men as it was for women

These assumptions might be true, but obviously we have no
guarantee of that
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No interactions
Interactions

Interactions

Suppose we wanted a more flexible model – one that allowed
alcoholism to have one effect in men and a different effect in
women

We can achieve that by introducing a new variable called, say,
AlcoholicMale, and then fitting the model

E(Metabol) = β0 + β1Male+ β2Alcoholic+ β3AlcoholicMale

In the lingo of regression modeling, this is called introducing
an interaction between sex and alcoholism, with
β3AlcoholicMale said to be the interaction term
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No interactions
Interactions

Interaction terms in R/SAS

Note that we don’t really need a new variable to represent
AlcoholicMale

If we have the indicator variables Male and Alcoholic, then

AlcoholicMale = Alcoholic · Male

Note that R and PROC GLM will allow you to include
mathematical operations (logarithms, multiplication, etc.) in
the model statement, whereas PROC REG will not
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No interactions
Interactions

Interaction terms in R/SAS (cont’d)

Thus, if you’re using PROC GLM, you can specify the model
with

MODEL Metabol = Male Alcohol Male*Alcohol;

or alternatively, Male|Alcohol, which includes both the
interaction and the main effects

If you’re using PROC REG, you have to specify everything
manually

In R, Male*Alcohol includes both interactions and main
effects; to specifically request only the interaction, use
Male:Alcohol
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No interactions
Interactions

Let’s think about the model and what the coefficients mean:

E(Metabol) =


β0 Female non-alcoholics

β0 + β1 Male non-alcoholics

β0 + β2 Female alcoholics

β0 + β1 + β2 + β3 Male alcoholics

Thus,

β0 is the expected alcohol metabolism for female
non-alcoholics
β1 is the difference in expected alcohol metabolism between
male and female non-alcoholics
β2 is the difference in expected alcohol metabolism between
alcoholic and non-alcoholic females
β3 is how much higher the difference in expected alcohol
metabolism between alcoholic and non-alcoholic males is than
the same difference for females
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No interactions
Interactions

Default tests: interpretation

From the default output, we can see that H0 : β1 = 0 looks
pretty doubtful, but that H0 : β2 = 0 and H0 : β3 = 0 look
plausible

This model, then, supports the conclusion that male
non-alcoholics have a significantly higher alcohol metabolism
than female non-alcoholics, but finds no evidence that the
metabolism of alcoholic females differs from that of
non-alcoholic females, nor evidence of a bigger difference
between alcoholic and non-alcoholic males than there is
between alcoholic and non-alcoholic females

However, it’s important to note that there are additional
interesting tests here
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No interactions
Interactions

Additional tests

For example, do male alcoholics have a significantly higher
alcohol metabolism than female alcoholics?

Mathematically, we want to test H0 : β1 + β3 = 0

Thus, λT = (0, 1, 0, 1), and we obtain p = .27

Do alcoholic males have a significantly lower metabolism than
non-alcoholic males?

Perhaps (p = .051)
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No interactions
Interactions

The easy way out

The lazy statistician’s way of getting those same estimates and
tests is to change the reference category and refit the model

Note that if we fit the model with Female and Nonalcoholc

as explanatory variables, we get our p = .051 and p = .27 by
default
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No interactions
Interactions

Male*Gastric

What about our other two-variable model, with Sex and
Gastric?

Do interaction terms mean anything here?

E(Metabol) = β0 + β1Male+ β2Gastric+ β3MaleGastric

Indeed they do: they allow the effect of gastric alcohol
dehydrogenase to differ by sex

Patrick Breheny BST 760: Advanced Regression



One-variable models
Two-variable models

Three-variable models

No interactions
Interactions

Interpreting the parameters

Thinking about the coefficients:

E(Metabol) =

{
β0 + β2Gastric Females

β0 + β1 + (β2 + β3)Gastric Males

In other words, we are fitting different lines, with separate
slopes and intercepts, for each sex

What would this model mean?

E(Metabol) = β0 + β2Gastric+ β3MaleGastric

This one?

E(Metabol) = β0 + β3MaleGastric
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No interactions
Interactions

Trellis plots - R

It is often useful to visualize these separate regression lines;
one way to do this is with what are called trellis plots

In R, the lattice package provides these sorts of plots

The basic function in the lattice package is xyplot, whose
syntax works like y~x|z, meaning plot y versus x,
conditioning on z

So for example:

require(lattice)

xyplot(Metabol~Gastric|Sex)
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No interactions
Interactions

Trellis plots - R (cont’d)

The type option controls what is plotted in each panel, and
accepts multiple arguments

So, for example,

xyplot(Metabol~Gastric|Sex,type=c("p","r"))

plots both points and a regression line
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No interactions
Interactions

Trellis plots - SAS

In SAS, one can obtain such plots with PROC SGPANEL, which
requires a plotting statement like you would find in PROC

SGPLOT and also a PANELBY statement, which sets up the
panels

So for example:

PROC SGPANEL DATA=alcohol;

PANELBY Sex;

REG Y=Metabol X=Gastric;

RUN;
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No interactions
Interactions

Interpreting main effects

The Gastric-Sex interaction model has a significant
interaction term, which suggests that our earlier models may
have been too simplistic

If the effect of alcohol dehydrogenase depends on sex, then
it’s impossible to consider the effect of one without the other

For example, what conclusions should we draw about the fact
that the main effect of Sex is no longer significant in our
model?

Can we conclude that there is no difference in alcohol
metabolism between males and females once we have adjusted
for the effect of alcohol dehydrogenase?
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No interactions
Interactions

Interpreting main effects (cont’d)

No; this test only compares the two at the specific alcohol
dehydrogenase activity level of 0

If we compared males and females at a different level of
alcohol dehydrogenase – still holding it constant across the
comparison, just not constant at 0 – we might get a
significant result

For example, if we center Gastric in our model, the main
effect of Sex is now highly significant (p = .0006)
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Two-variable recap

To recap, some salient conclusions from our two-variable models
are:

Alcoholism is associated with sex, so any conclusion about
one, if the other one hasn’t been adjusted for, is subject to
confounding

The effect of alcohol dehydrogenase on alcohol metabolism
seems to depend on sex
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Male+Alcoholic+Gastric

Moving on to three-variable models, the simplest one is

E(Metabol) = β0 + β1Male+ β2Alcoholic+ β3Gastric

This model would indicate that males have higher alcohol
metabolism than females, as do people with higher levels of
alcohol dehydrogenase

Furthermore, it suggests that there is very little effect of
alcoholism on alcohol metabolism after adjusting for sex and
enzymatic activity
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Including an interaction

However, we have reason to be dissatisfied with this model, as
our earlier modeling indicated that the relationship between
Gastric and Metabol depends on sex

Thus, it would seem prudent to investigate this model:

E(Metabol) =β0 + β1Male+ β2Alcoholic+ β3Gastric

+ β4MaleGastric

This allows a different Metabol-Gastric regression line for
each sex, while controlling for alcoholism
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Interpretation

This model indicates that

There is a very strong effect of alcohol dehydrogenase in males

There is a much less strong effect of alcohol dehydrogenase in
females – indeed, we cannot even rule out that alcohol
dehydrogenase has no effect in females

At low levels of alcohol dehydrogenase, men and women have
similar alcohol metabolism; at higher levels, however, men
have much higher alcohol metabolism

There is no evidence that alcoholism plays an important role
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Assumptions

However, let’s think about what assumptions and restrictions
are imposed by the preceding model

It allows different slopes for each sex, but the slope for male
alcoholics is assumed to be the same as the slope for male
non-alcoholics

Is this true?
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Plotting the four lines

A two-way trellis plot suggests that this is not necessarily true:
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Male*Alcoholic*Gastric

So let’s try fitting a model that allows for a different regression
line for each combination of sex and alcoholism status:

E(Metabol) =β0 + β1Male+ β2Alcoholic+ β3Gastric

+ β4AlcoholicMale+ β5AlcoholicGastric

+ β6MaleGastric+ β7AlcoholicMaleGastric

Note that this model involves a term that is the product of
three variables; this is a so-called three-way interaction model
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Remarks

Note that the number of parameters add up to what it should:
we need an intercept and a slope for every combination of sex
and alcoholism, so we need 2× 4 = 8 parameters, and that’s
exactly how many coefficients we have

You can specify this model manually, with
Alcoholic*Male*Gastric in R or with
Alcoholic|Male|Gastric in PROC GLM

Note that the above constructions automatically include all
possible lower-order interactions (in this case, all the two-way
interactions)
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Interpreting the parameters

Let’s think about what the regression lines look like in the four
different groups:

Group Intercept Slope

Female non-alcoholics β0 β3
Male non-alcoholics β0 + β2 β3 + β6
Female alcoholics β0 + β1 β3 + β5
Male alcoholics β0 + β1 + β2 + β4 β3 + β5 + β6 + β7
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Inferences

If we carry out comparisons of slopes between groups, we find
that:

There is significant evidence of a difference in slopes between
male and female non-alcoholics
There is no evidence of any difference in slope between
alcoholic and non-alcoholic females, between male and female
alcoholics, or between alcoholic and non-alcoholic males
(although there is a fairly large estimated difference in this last
comparison)

However, the test of the three-way interaction was not
significant, suggesting that we might not need different slopes
depending on alcoholism status
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Concluding remarks

We’ve ran through a spectrum today from very simple models
that were equivalent to the two-sample t-test, to rather
complicated multiparameter models with a zoo of interaction
terms

Two concluding remarks:

Linear models are very flexible, and accommodate a wide range
of complexity all in a single framework
How do we decide where in this spectrum the most appropriate
model lies? This is where we will direct our attention next, as
we start discussing the art of model selection and diagnostics
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