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The Gauss-Markov Theorem

Today we will start assuming distributional forms for the
random errors, which in turn will allow us to develop
confidence intervals and hypothesis tests

Before we do that, we’ll wrap up our least-squares results by
proving one of the more famous theorems in statistics (which
can be equivalently stated in one of two ways)

Gauss-Markov Theorem: Suppose (1) holds and that we are
interested in estimating λTβ. Then λT β̂ is the best linear
unbiased estimator (BLUE).

Gauss-Markov Theorem: Suppose (1) holds. Then β̂ is
BLUE.
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Comments

Certainly, this is a very impressive result: regardless of the
distribution of the outcome, the ordinary least squares
estimate is the best linear unbiased estimator of any linear
combination of the parameters {βj}
On the other hand, it is worth keeping in mind some caveats:

Once again, we are assuming that our model is correct; in
particular, that there is not some additional variable out there
which could help us explain y better
Why restrict ourselves to linear estimators?
Why restrict ourselves to unbiased estimators?
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Linear combination of normals

We will now state a number of facts about the normal
distribution and related distributions, which we will use in the
latter half of lecture when deriving distributional results for
the least-squares estimators

If X and Y are normally distributed, then X and Y are
independent if and only if Cov(X,Y ) = 0

Suppose the variables {Yi} are independent and normally
distributed with means {µi} and variances {σ2i }; then

∑
i

aiYi ∼ N

(∑
i

aiµi,
∑
i

a2iσ
2
i

)
aTy ∼ N

(
aTµ,aTΣa

)
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The multivariate normal distribution

The normal distribution can be extended to describe vectors
of random variables with what is called the multivariate
normal distribution

Suppose {Yi} are normally distributed random variables, with
E(y) = µ and Var(y) = Σ; then y is said to have a
multivariate normal distribution, denoted

y ∼ N(µ,Σ)
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The χ2 distribution

Suppose {Zi}ni=1 are independent random variables, each with
a standard normal distribution; the sum of {Z2

i } is said to
follow a χ2 distribution with n degrees of freedom:

n∑
i=1

Z2
i ∼ χ2

n

From this definition, we can also see that if {X2
i } are

independent random variables following χ2 distributions with
{ni} degrees of freedom, then

∑
iX

2
i follows a χ2

distributions with
∑

i ni degrees of freedom

It is also straightforward to check that if X2 follows a χ2

distributions with n degrees of freedom, then E(X2) = n and
Var(X2) = 2n
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The χ2 distribution (cont’d)

If the random variables are normal, but not necessarily
independent or standard normal, they can still be combined to
form a variable with a χ2 distribution

Suppose y ∼ N(µ,Σ); then

(y − µ)TΣ−1(y − µ) ∼ χ2
n,

where n is the number of elements of y
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The χ2 distribution (cont’d)

Indeed, even if Σ is not invertible, a similar sort of result can
be constructed

Let Σ− be a matrix that satisfies ΣΣ−Σ = Σ (such a matrix
is called a generalized inverse)

Suppose y ∼ N(µ,Σ), with Σ not necessarily full-rank; then

(y − µ)TΣ−(y − µ) ∼ χ2
k,

where k is the rank of Σ
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The t distribution

Suppose that Z ∼ N(0, 1), X2 ∼ χ2
n, and that Z and X2 are

independent; then

Z√
X2/n

∼ tn,

the t-distribution with n degrees of freedom
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The F distribution

Suppose that X2
1 ∼ χ2

n, X2
2 ∼ χ2

m, and that X2
1 and X2

2 are
independent; then

X2
1/n

X2
2/m

∼ Fn,m,

the F distribution with n and m degrees of freedom

Note that n and m are specifically ordered: Fn,m is not the
same thing as Fm,n
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Relationship between the t and F distributions

Finally, suppose that T ∼ tn; then note that

T 2 ∼ Z2

X2/n
∼ F1,n

In other words, the t distribution is a (transformed) special
case of the F distribution
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Distribution of β̂
t-tests
F -tests

New assumptions

The results we are about to derive will be based on the
following set of assumptions: Suppose that

y = Xβ + ε (2)

where X is a fixed n× p matrix of full column rank and ε is
an n× 1 vector of random errors {εi} which are independently
distributed normal random variables with mean 0 and variance
σ2

In other words,

ε ∼ N(0, σ2I)

For the rest of this lecture, I will refer to the above set of
assumptions by saying something along the lines of “Suppose
that (2) holds”
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The distribution of β̂

Now, we are ready to derive the distribution of β̂

Theorem: Suppose that (2) holds. Then

β̂ ∼ N
(
β, σ2(XTX)−1

)
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Two theorems about RSS

Before we can prove the main distributional result which
allows us to construct confidence intervals and carry out
hypothesis tests, we need to prove two theorems about the
residual sum of squares

Theorem: Suppose that (2) holds. Then RSS ∼ σ2χ2
n−p.

Theorem: Suppose that (2) holds. Then RSS and β̂ are
independent.

The second of these theorems relies on the fact that if y
follows a normal distribution, then
Cov(BTy,yTAy) = 2BTΣAµ
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Distributional result

We are now in a position to derive the following very
important result:

Theorem: Suppose that (2) holds. Then

β̂j − βj
ŜE

∼ tn−p,

where ŜE is the square root of σ̂2(XTX)−1
jj

Corollary: Suppose that (2) holds. Then

λT β̂ − λTβ

ŜE
∼ tn−p,

where ŜE is the square root of σ̂2λT (XTX)−1λ
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Hypothesis tests

This result is very useful; for one thing, it allows us to carry
out hypothesis tests

Under H0 : βj = 0,

β̂j

ŜE
∼ tn−p,

Under H0 : λ
Tβ = 0,

λT β̂

ŜE
∼ tn−p,
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Confidence intervals

It also allows us to construct confidence intervals

Define tα,n to be the upper point of a t distribution with n
degrees of freedom; i.e., suppose T ∼ tn; then
Pr(T > tα,n) = α

The following is a (1− α)× 100% confidence interval for βj :[
β̂j − tα/2,n−pŜE, β̂j + tα/2,n−pŜE

]
The following is a (1−α)× 100% confidence interval for λTβ:[

λT β̂ − tα/2,n−pŜE,λT β̂ + tα/2,n−pŜE
]
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Simultaneous hypothesis testing

Finally, suppose we wanted to test several hypotheses at once
(this is not merely of hypothetical interest; next time, we’ll
see some practical examples)

For example, suppose we wanted to test whether
λT1 β,λ

T
2 β, . . .λ

T
q β were all equal to zero

First, some notation: let’s collect {λi} into a p× q matrix Λ,
let τ̂ = ΛT β̂, and let V = ΛT (XTX)−1Λ
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The F -test

Theorem: Suppose that (2) holds. Then

(τ̂ − τ )TV−1(τ̂ − τ )

qσ̂2
∼ Fq,n−p

We can then carry out a test of H0 : ΛTβ = 0 based on

τ̂TV−1τ̂

qσ̂2
∼ Fq,n−p
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The F -test (cont’d)

In the special case where all the {λi} test whether individual
coefficients are equal to zero, the above can be equivalently
stated in terms of the residual sums of squares coming from
the “full” and “reduced” (leaving out those coefficients
hypothesized to be zero) models

Corollary: Suppose that that (2) holds and that we are
testing whether some set of coefficients {βj}qj=1 are all equal
to zero. Let RSS1 and RSS0 denote the residual sums of
squares for the full and reduced models, respectively. Then
under H0 : βj = 0 for all j,

(RSS0 − RSS1)/q

RSS1/(n− p)
∼ Fq,n−p,

where q is the difference in the number of parameters between
the two models
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Confidence intervals

In theory, this F -distribution result can be used to construct
confidence regions for τ as well

A (1− α)× 100% confidence set for τ is given by the set of
all τ that satisfy

(τ̂ − τ )TV−1(τ̂ − τ ) ≤ qσ̂2Fα,q,n−p

Such confidence sets, however, are not common, as the
resulting set is a q-dimensional ellipsoid, which is not easy to
report and describe
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