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Remedial measures

Suppose one of your diagnostic plots indicates a problem with
the model’s fit or assumptions; what options are available to
you?

Generally speaking, you have three avenues down which you
could proceed:

Transforming the outcome variable
Using a different method
Fitting a more flexible model
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Example: Ozone model
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Example: Ozone model again
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This approach is known as the Box-Cox procedure, after two
statisticians who identified an automatic method for identifying the
optimal normalizing exponent to which y should be raised
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Central limit theorem for regression (informal)

You may be wondering: how important is it if y does not
follow a normal distribution?

For simpler methods like the t-test, the central limit theorem
guarantees that we have approximate normality regardless of
the distribution of y; is there a similar result for regression

There is, but it requires that the diagonal elements of H are
small – i.e., that no one point “takes over” the regression fit

Central limit theorem for regression (informal): If n is
reasonably large and none of the values {Hii} are too large,

then (β̂ − β)/ŜE follows an approximately normal distribution
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Ozone example: Effect of transformation on p-values

In the ozone example, what was the effect of transformation
on hypothesis testing:

Ozone log(Ozone + 3) 5
√

Ozone

Solar .03 .0001 .0002
Wind 1× 10−6 2× 10−5 1× 10−5

Temp 1× 10−9 7× 10−13 7× 10−13

Day .1 .2 .2

Generally speaking, transformations which normalize the
outcome result in more powerful tests and smaller standard
errors (although not always for all coefficients)
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SE and flexible models

Now to the more complicated issue of fitting more flexible and
complicated models to the data (but still a linear regression
model)

Let’s compare the standard errors for the following two
models fit to the alcohol metabolism data:

Coefficient SE

Male 0.55
Alcoholic 0.60
Gastric 0.29

Coefficient SE

Male 1.33
Alcoholic 3.94
Gastric 0.52
Male·Alcoholic 4.39
Male·Gastric 0.62
Alcoholic·Gastric 2.81
Male·Alcoholic·Gastric 3.00
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The bias-variance tradeoff

This example illustrates what is perhaps the central concept in
statistical modeling: the bias-variance tradeoff

As we fit more flexible and complicated models with larger
numbers of parameters and adjust for ever-larger numbers of
confounders, bias becomes less of an issue

However, the variances of our estimates become very large
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Overfitting

This is a fundamental idea in the notion of statistical inference
– just because you can describe the sample well does not mean
that this description can be generalized to the population

As we have seen, RSS always goes down as you add more
parameters to a model

But this does not mean that more complicated models are
more successful at predicting outcomes that lie outside our
sample

This phenomenon is referred to as overfitting; a model that
describes the sample very well, but generalizes poorly, is said
to be overfit
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Bias-variance tradeoff – illustration

An illustration of this phenomenon, courtesy of The Elements of
Statistical Learning, by Hastie, Tibshirani, and Friedman:

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2

High Bias
Low Variance

Low Bias
High Variance
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Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function
of model complexity.Here training sample refers to the data used to fit the model, and

test sample on an external sample used to test the accuracy of the
model
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Parsimony

A related notion is that of parsimony: given two models that
explain the outcome roughly equally well, the simpler model is
better (this is also referred to as Occam’s razor)

Statistically speaking, simpler models with fewer variables are
desirable because they lead to lower variance and are easier to
interpret

Either way, the take-home message is the same: overly simple
and overly complex models are both bad (for different
reasons), and the best model usually lies somewhere in the
middle between these two extremes

In the words of Einstein, “Everything should be made as
simple as possible, but no simpler”
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Model selection criteria

So how do we find this “sweet spot” in the middle?

The most common approach is to use some sort of
model-selection criterion which provides a measure of the
overall quality of a model

To be useful, such a criterion must punish models that are
overly simple, as well as enforce parsimony and punish models
that are overly complex

The idea is that we can fit a number of different models, and
then compare them in terms of some criterion to identify a
model or models that seem to appropriately balance bias and
variance

Patrick Breheny BST 760: Advanced Regression
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Sequence of models

In what follows, we will consider the following nested sequence of
ever more complex models for the alcohol data set:

1: Intercept only

2: Add Gastric

3: Add Male

4: Add Alcoholic

5: Add MaleGastric

6: Add AlcoholicGastric

7: Add MaleAlcoholic

8: Add MaleAlcoholicGastric

Patrick Breheny BST 760: Advanced Regression
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R2

We know that R2 is not a good model selection criterion – it will
always choose the most complex model and therefore drive us
towards overfitting:
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Adjusted R2

One approach is to simply adjust R2 by dividing RSS and
TSS by their degrees of freedom:

R2 = 1− RSS

TSS

R2
adj = 1− RSS/(n− p)

TSS/(n− 1)

This criterion is called the adjusted R2

If a more complex model does not fit any better than you
would expect by random chance, then its R2

adj will not be any
higher than the simpler model

Patrick Breheny BST 760: Advanced Regression
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Adjusted R2: Illustration
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Mean squared error

However, although R2
adj does not reward overfitting, it doesn’t

really penalize it either

More sophisticated approaches attempt to directly estimate
quantities which measure both the bias and variance of a
model

The total mean squared error of a model’s fit is defined as the
expected value of ∑

i

(µ̂i − µi)2

Patrick Breheny BST 760: Advanced Regression
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Estimating total mean squared error

By a similar calculation to how we decomposed the total sum
of squares, it can be shown that

E
∑
i

(µ̂i − µi)2 =
∑
i

{
(Eµ̂i − µi)2 +Var(µ̂i)

}
= BSS + pσ2,

where BSS stands for “bias sum of squares”

It can also be shown that if the {µ̂i} are not unbiased,

E(RSS) = BSS + (n− p)σ2

Thus, a reasonable estimator of the total mean squared error
is

RSS− (n− p)σ2 + pσ2 = RSS− nσ2 + 2pσ2

Patrick Breheny BST 760: Advanced Regression
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Mallows’ Cp

This idea was originally proposed by Mallows, who divided
both sides by σ2 to obtain

Cp =
RSS

σ2
− n+ 2p,

which is referred to as Mallows’ Cp

Obviously, to use this criterion, we need an estimate for σ2

Customary practice is to use the largest model under
consideration to estimate the error variance, and then use this
σ̂2 to calculate Cp for all the models

Note that if the model has no bias, then Cp ≈ p

Patrick Breheny BST 760: Advanced Regression
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Cp: Illustration
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Expected prediction error

A related concept is the expected prediction error of a model,
defined as the expected value of∑

i

(Yi − µ̂i)2

Note that in the above, we are drawing two separate sets of
y’s (i.e., the expectation is a double expectation):

One set is used to fit the model
The other set is used to evaluate the fit
The two sets have the same {xi} values, however

Patrick Breheny BST 760: Advanced Regression



Transformations
The bias-variance tradeoff

Model selection criteria
Remarks

Estimating prediction error

Using the same sort of decomposition as before,

E
∑
i

(Yi − µ̂i)2 =
∑
i

{
Var(Yi) + (Eµ̂i − µi)2 +Var(µ̂i)

}
= nσ2 +BSS + pσ2

Thus, a reasonable estimator of the prediction error is

nσ2 +RSS− (n− p)σ2 + pσ2 = RSS + 2pσ2

This produces the same criterion as Cp, up to the constant
term of −n, which is the same for all models

Patrick Breheny BST 760: Advanced Regression
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AIC

Consider, however, evaluating the accuracy of the predictions
using the log likelihood – i.e., trying to estimate

E
∑
i

log Prθ̂(Yi)

where θ̂ is the maximum likelihood estimate of the parameters
of the distribution function of y (and once again, the y’s used
to fit the model are different from the y’s used to evaluate the
fit)

This idea was originally proposed by Akaike, who showed that

−2E
∑
i

log Prθ̂(Yi) ≈ −2E(loglik) + 2p,

where loglik is the log-likelihood of the fitted model

Patrick Breheny BST 760: Advanced Regression
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AIC (cont’d)

This suggests the following criterion, named the Akaike
information criterion:

AIC = −2loglik + 2p

However, because −2loglik = n log(RSS) plus some other
constants, we can write

AIC = n log(RSS) + 2p

Note that this is not actually equal to the above AIC, but as
long as you use the same definition to evaluate all the models,
the relative ordering will be the same

Patrick Breheny BST 760: Advanced Regression
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Advantages and drawbacks of AIC

A drawback of this criterion is that it only holds approximately
(asymptotically)

However, AIC has two considerable advantages:

It does not require a reference model which is assumed to be
able to estimate σ2

It is readily extended to other distributions besides the normal,
which will come in handy later on when we look at generalized
linear models
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AIC: Illustration
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BIC

A somewhat related criterion is called the Bayesian
information criterion, or BIC

As you might guess, its derivation is Bayesian and beyond the
scope of this course

However, its form is very similar to AIC:

BIC = n log(RSS) + p log(n)

Note that because log(n) is bigger than 2 (unless the sample
size is impractically small), BIC penalizes model complexity
more heavily than AIC, and thus tends to favor highly
parsimonious models

Patrick Breheny BST 760: Advanced Regression
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BIC: Illustration
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PRESS

One final measure that can be used to estimate the
generalization error of a model is to re-fit the model without
the ith observation and measure how far off its prediction is
from yi: ∑

i

(yi − µ̂i(−i))2 =
∑
i

(
ri

1−Hii

)2

This statistic is called PRESS (for prediction sum of squares)

PRESS can also be used to check for overfitting: if PRESS is
much higher than RSS, then overfitting has occurred

Patrick Breheny BST 760: Advanced Regression
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PRESS: Illustration
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Each of the model selection criteria we have talked about
have their own strengths and weaknesses

For example, none of AIC, BIC, or PRESS are invariant to a
change of scale in the outcome variable, making them useless
for choosing transformations

On the other hand, R2 and R2
adj are invariant and can be used

to select transformations:

R2 R2
adj

Ozone 0.616 0.602
log(Ozone) 0.667 0.654
log(Ozone+3) 0.688 0.676√
Ozone 0.679 0.667

5
√
Ozone 0.686 0.675
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Remarks (cont’d)

However, as we have seen, R2 and R2
adj are not particularly

useful for choosing between models with different numbers of
variables

Among the rest, PRESS and Cp are exact (although Cp relies
on a shaky assumption that you can reliably estimate the true
error variance), although they do not generalize well to
non-linear models

Meanwhile, AIC and BIC are applicable to all likelihood-based
models, and as a result are the most popular of the model
selection criteria, although their derivations rely on asymptotic
approximations which may not be valid at smaller sample sizes

Patrick Breheny BST 760: Advanced Regression


	Transformations
	The bias-variance tradeoff
	Model selection criteria
	Remarks

