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Introduction

Today in lab we’re going to apply the formulas we derived last
time to our ozone data and go through several examples of
quantifying the variability of estimates and predictions

We’ll also take a closer look at what exactly is meant by
“linear” regression and linear-versus-nonlinear dependence
among the explanatory variables
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Residuals in R

Let’s begin by re-fitting our model from last time, storing the
fit, and inspecting various components of the fit:

fit <- lm(Ozone~Solar+Wind+Temp+Day)

fit$coefficients

fit$fitted.values

fit$residuals

fit$rank

fit$df.residual

Note that

n <- nrow(ozone)

p <- fit$rank

n-p

is equal to fit$df.residual
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Residuals in SAS

In SAS, one can see the residuals and fitted values by passing
along a P option to the MODEL statement:

PROC REG DATA=ozone;

MODEL Ozone = Solar Wind Temp Day / P;

RUN;

Note that the residual degrees of freedom and residual sum of
squares are also reported
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Estimating σ2

We showed last time that dividing the residual sum of squares
by n− p produces an unbiased estimator of σ2:

In R,

sig2 <- sum(fit$residuals^2)/fit$df.residual

sig <- sqrt(sig2)

In SAS, σ̂ is reported as “Root MSE” (the residual sum of
squares is also referred to as the “squared error”, and dividing
by n− p is akin to taking the “mean squared error”)

Note that the standard deviation of ozone concentrations is
33.3, whereas σ̂ = 21.0
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Estimating the variance of β̂

Now we can estimate the variance of β̂:

X <- as.matrix(cbind(1,ozone[,-1]))

VarB <- sig2*solve(crossprod(X))

Alternatively, the function summary computes additional
information about the least squares fit:

summ <- summary(fit)

summ$sigma

summ$cov.unscaled

summ$sigma^2*summ$cov.unscaled

In SAS, the you can pass the COVB option to the MODEL

statement to obtain the estimated variance-covariance matrix
of β̂
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Estimating the variance of β̂

Now that we have V̂ar(β̂), we are in a position to quantify
the variability of our estimates, as well as combinations of
estimates

An obvious place to start is with the standard errors of our
regression coefficients:

sqrt(diag(VarB))

Note that this agrees with the reported standard errors from
summary(fit) and PROC REG
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Variance of linear combinations

However, we can also estimate the variance/standard error of
combinations of parameters

Suppose we are interested in some linear combination of
parameters λTβ:

Var(λT β̂) = λTVar(β̂)λ

So, for instance, suppose we wanted to know about the effect
on ozone concentrations of simultaneously lowering the wind
speed by 5 mph and raising the temperature by 10 degrees
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Variance of linear combinations in R/SAS

In R,

lambda <- c(0,0,-5,10,0)

crossprod(lambda,fit$coefficients)

sqrt(t(lambda) %*% VarB %*% lambda)

So the effect of this change in the weather will be to raise
ozone concentrations on average 34.9 ppb ± 3.15 ppb

The ESTIMATE statement in SAS accomplishes the same
thing, although for some inexplicable reason, it is not available
in PROC REG; you have to use PROC GLM:

PROC GLM Data=ozone;

MODEL Ozone = Solar Wind Temp Day;

ESTIMATE ’-5*Wind+10*Temp’ Wind -5 Temp 10;

RUN;
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The point of the off-diagonal elements

Note that we would not get the right answer if we ignored the
covariance between β̂3 and β̂4:

25*VarB[3,3] + 100*VarB[4,4]

Furthermore, the uncertainty in estimating the effect of
dropping wind speed and raising temperature is not the same
as the uncertainty involved in raising wind speed and raising
temperature:

lambda <- c(0,0,5,10,0)

sqrt(t(lambda) %*% VarB %*% lambda)

The intuitive explanation for this is that wind speed and
temperature were negatively correlated, so there is a lot more
information in the data set about what would happen if one
was raised and the other lowered than if they were both raised
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Prediction

Let’s revisit our two sample days from last week:

A: Solar=180, Wind=15, Temp=70, Day=274
B: Solar=180, Wind=5, Temp=90, Day=274

We could predict the average ozone concentration of these
two days using

a <- c(1,180,15,70,274)

b <- c(1,180,5,90,274)

in place of lambda

This would indicate that Day A can expect to have an ozone
concentration of 5.2 ± 5.4, while Day B can expect to have
an ozone concentration of 74.9 ± 4.3
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Prediction (cont’d)

This estimate of variability does not, however, accurate
represent the uncertainty concerning the actual concentration
of day 274

The ± number only takes into account our uncertainty about
the mean ozone concentration, not the inherent daily
variability in ozone levels

The actual variability of the ozone concentration of day 274 is
the larger number

Var(xT β̂ + ε) = xTVar(β̂)x+ σ2
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Prediction in R/SAS

So in R,

sqrt(t(a) %*% VarB %*% a + sig2)

In SAS, you can add observations to the data set, and then
request intervals for the mean with CLM and intervals for
individual days with CLI:

PROC REG DATA=ozone;

MODEL Ozone = Solar Wind Temp Day / P CLM CLI;

RUN;
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R2 in R/SAS

Finally, let’s calculate R2:

var(Ozone)

var(fit$residuals) + var(fit$fitted.values)

TSS <- crossprod(Ozone-mean(Ozone))

RSS <- crossprod(fit$residuals)

MSS <- crossprod(fit$fitted.values-mean(fit$fitted.values))

MSS/TSS

cor(fit$fitted.values,Ozone)^2

R2 is also reported by default with summary(fit) and by
PROC REG
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Interpretation of R2

The fact that our model is able to explain 62% of the
variability in ozone concentrations is reassuring that our
model fits the data reasonably well

If, on the other hand, R2 = .08 (not at all uncommon), we
might have doubts

A low R2 could be caused simply by large random effects and
inherent unpredictability, but it could also be a signal of a bad
model which leaves out many important factors

Furthermore, if there are important factors left out of the
model, perhaps they are confounders that would alter the
model’s conclusion if they were incorporated
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Interpretation of R2 (cont’d)

However, it bears reminding that a high R2 does not rule out
the possibility of confounding or prove that the model is
correct

For example, over the period 1950-1999, the correlation in the
U.S. between deaths from lung cancer and the purchasing
power of the dollar was 0.95 (i.e., R2 = .9)

Inflation, however, does not cause lung cancer!
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Close to linear dependence

We have said that linearly dependent variables cause problems
in linear regression, and seen the kinds of error messages they
provoke in SAS and R

Do highly correlated, but not strictly dependent variables
cause problems?

Indeed they do; try

Wind2 <- Wind + rnorm(n,mean=0,sd=20)

cor(Wind,Wind2)

summ <- summary(lm(Ozone~Solar+Wind+Temp+Day))

summ2 <- summary(lm(Ozone~Solar+Wind+Temp+Day+Wind2))

diag(summ$sigma^2*summ$cov.unscaled)

diag(summ2$sigma^2*summ2$cov.unscaled)
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Close to linear dependence (cont’d)

Not much increase in the variance of β̂Wind . . .

However, as we decrease the SD of the random noise (and
thereby increase the correlation between Wind and Wind2),
the variance increases without bound
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Nonlinear functions do not cause problems

However, it is important to note that it is only linear
dependence that causes problems

For example, suppose we introduce

WindSq <- Wind^2

summary(lm(Ozone~Solar+Wind+WindSq+Temp+Day))

Even though Wind and WindSq are completely dependent, this
does not cause any problems (quite the contrary: R2 goes up
from 62% to 70%)
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“Linear” regression?

But wait, if we’ve got terms like Wind2 in the model, is our
model still “linear”?

Yes, the model is still considered to be linear, because it’s still
linear with respect to the parameters {βj}, and therefore
estimation and inference work in exactly the same way,
regardless of whether or not the variables happen to be
nonlinear transformations of each other

The same goes for transformations of the outcome variable as
well
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Transformation

So, for example, you may have been troubled by our earlier
result that the mean ozone concentration for Day A was 5.2
± 5.4, as this would seem to suggest that negative ozone
concentrations are likely

One way to enforce positive values is to model the log of the
ozone concentrations:

fit <- lm(log(Ozone)~Solar+Wind+Temp+Day)

summary(fit)

Any resulting predictions or estimates would then be on the
log scale, and once the inverse transformation was applied,
would necessarily be positive
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Factors

One final issue while we’re on the topic of transformations is
the issue of categorical explanatory variables (sometimes
called factors)

Suppose we’re studying the relationship between x and y, but
we wish to adjust for gender (which can take on one of two
values, “Male” or “Female”)

We of course need to quantify this for our model; one way of
doing this is to introduce indicator variables (also called
dummy variables): Male = 1 if Gender=‘‘Male’’, 0 if
Gender=‘‘Female’’
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Linear dependence among factors

An indicator variable Female could also be created, but
caution is in order:

Female = 1 - Male

and thus, assuming that we have an intercept in our model,
the two variables will be linearly dependent

One option, of course, is to eliminate the intercept; this would
mean that the coefficient βMale would be the intercept for the
males, while βFemale would be the intercept for the females
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Linear dependence among factors (cont’d)

The other option would be to only include the coefficient for
males

This model is functionally equivalent to the other model (all
the fitted values, residuals, R2, etc. will be identically the
same), but the meaning of the regression coefficients will be
different

Now, β0 will be the intercept for the females, and β0 + βMale

will be the intercept for the males

We will go into more detail, with real examples, next Tuesday
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