Multiple linear regression: Inference, Part I

Patrick Breheny

January 27

Introduction

- In our last lecture, we discussed how to estimate the regression coefficients
- Our goal today is to start addressing the question: how accurate are those estimates?
- In particular, we will be deriving the expectation and variance of our estimates, and some related concepts

Our assumptions for today

- The results we will derive today are based on the following central assumption: Suppose that

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

where \mathbf{X} is a fixed $n \times p$ matrix of full column rank and $\boldsymbol{\epsilon}$ is an $n \times 1$ vector of random errors $\left\{\epsilon_{i}\right\}$ which are identically and independently distributed with mean 0 and variance σ^{2}

- In other words,

$$
\begin{aligned}
\mathrm{E}(\boldsymbol{\epsilon}) & =\mathbf{0} \\
\operatorname{Var}(\boldsymbol{\epsilon}) & =\sigma^{2} \mathbf{I}
\end{aligned}
$$

- For the rest of this lecture, I will refer to the above set of assumptions by saying something along the lines of "Suppose that (1) holds"

Expectation and variance of linear and quadratic forms

- For today's derivations, we will need to calculate the expectation and variance of linear and quadratic forms
- Letting A denote a matrix of constants and \mathbf{x} a random vector with mean $\boldsymbol{\mu}$ and variance $\boldsymbol{\Sigma}$,

$$
\begin{aligned}
\mathrm{E}\left(\mathbf{A}^{T} \mathbf{x}\right) & =\mathbf{A}^{T} \boldsymbol{\mu} \\
\operatorname{Var}\left(\mathbf{A}^{T} \mathbf{x}\right) & =\mathbf{A}^{T} \boldsymbol{\Sigma} \mathbf{A} \\
\mathrm{E}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right) & =\boldsymbol{\mu}^{T} \mathbf{A} \boldsymbol{\mu}+\operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma})
\end{aligned}
$$

The trace

- The operator tr (defined for any square matrix) refers to the trace of a matrix, defined as the sum of its diagonal elements:

$$
\operatorname{tr}(\mathbf{A})=\sum_{i} A_{i i}
$$

- Some basic facts about traces:

$$
\begin{aligned}
\operatorname{tr}(\mathbf{A B}) & =\operatorname{tr}(\mathbf{B A}) \\
\operatorname{tr}(\mathbf{A}+\mathbf{B}) & =\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \\
\operatorname{tr}(c \mathbf{A}) & =c \operatorname{tr}(\mathbf{A})
\end{aligned}
$$

- A further fact about traces that is not at all obvious but nonetheless useful is that if a matrix \mathbf{A} is idempotent, then $\operatorname{tr}(\mathbf{A})=\operatorname{rank}(\mathbf{A})$

$\hat{\boldsymbol{\beta}}$ is unbiased

- With these facts in mind, we are ready to prove that
- Theorem: Suppose that (1) holds. Then

$$
\mathrm{E}(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}
$$

i.e., estimating the regression coefficients by minimizing the residual sum of squares produces an unbiased estimator

- An important caveat here is this holds only if the model is correct; if the model is not correct (for example, it does not adjust for an important confounder), then estimates can be badly biased

The variance of $\hat{\boldsymbol{\beta}}$

- The other important component in assessing an estimator's accuracy is its variance
- Theorem: Suppose that (1) holds.

$$
\operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

- Note that the result is a symmetric $p \times p$ matrix with $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ on the diagonals and $\operatorname{Cov}\left(\hat{\beta}_{j}, \hat{\beta}_{k}\right)$ in the off-diagonal elements

Helpful facts

- Observe, however, that we can't actually calculate this variance (yet), because we don't know σ^{2}
- Before we go about deriving an unbiased estimator for σ^{2}, let's prove the following simple results which will help simplify our calculations:

$$
\mathbf{r}=(\mathbf{I}-\mathbf{H}) \mathbf{y}
$$

\mathbf{H} and $\mathbf{I}-\mathbf{H}$ are symmetric
\mathbf{H} and $\mathbf{I}-\mathbf{H}$ are idempotent

$$
\begin{aligned}
\mathbf{H X} & =\mathbf{X} \text { and } \mathbf{X}^{T} \mathbf{H}=\mathbf{X}^{T} \\
\mathbf{X}^{T} \mathbf{r} & =\mathbf{0}
\end{aligned}
$$

- I will also state the following without proof: $\operatorname{rank}(\mathbf{X})=\operatorname{rank}\left(\mathbf{X}^{T} \mathbf{X}\right)=\operatorname{rank}(\mathbf{H})$; i.e., if \mathbf{X} is full rank, all of those matrices have rank p

Trying to estimate σ^{2}

- In principle, we could estimate σ^{2} by

$$
\frac{1}{n} \sum \epsilon_{i}^{2}
$$

but of course the $\left\{\epsilon_{i}\right\}$ are not observable

- We could use

$$
\frac{1}{n} \sum r_{i}^{2}
$$

but since our model was specifically chosen so as to reduce the residual sum of squares, this turns out to underestimate σ^{2}

- Consider instead the following estimator:

$$
\hat{\sigma}^{2}=\frac{R S S}{n-p}
$$

- Theorem: Suppose that (1) holds. Then

$$
\mathrm{E}\left(\hat{\sigma}^{2}\right)=\sigma^{2}
$$

- Note that this estimator reduces to the usual unbiased estimators of variance and pooled variance in the one-sample and pooled two-sample cases, with $n-p$ as the degrees of freedom

Estimating the variance and standard error of $\hat{\boldsymbol{\beta}}$

- A reasonable estimator for the variance of $\hat{\boldsymbol{\beta}}$ is therefore

$$
\widehat{\operatorname{Var}}(\hat{\boldsymbol{\beta}})=\hat{\sigma}^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

- Furthermore, we can obtain standard errors by taking the square root of the diagonal elements

Decomposition of variance

- One final interesting result for today is that one can decompose the sample variance of y into two parts:

$$
\widehat{\operatorname{Var}}(y)=\widehat{\operatorname{Var}}(\hat{\mu})+\widehat{\operatorname{Var}}(r)
$$

where $\widehat{\operatorname{Var}}$ means the usual sample variance $\left(\left\{y_{i}\right\},\left\{\hat{\mu}_{i}\right\}\right.$, and $\left\{r_{i}\right\}$ are all observable)

- Or equivalently,

$$
T S S=M S S+R S S
$$

where

- TSS $=$ Total sum of squares, $\sum\left(y_{i}-\bar{y}\right)^{2}$
- MSS $=$ Model sum of squares, $\sum\left(\hat{\mu}_{i}-\bar{\mu}\right)^{2}$
- $R S S=$ Residual sum of squares, $\sum r_{i}^{2}$

The coefficient of determination

- A useful way of summarizing how good our explanatory variables are at explaining y, then, is to look at the proportional reduction in variability that our model achieves
- This quantity is referred to as the coefficient of determination and is denoted R^{2} :

$$
\begin{aligned}
R^{2} & =\frac{M S S}{T S S} \\
& =1-\frac{R S S}{T S S}
\end{aligned}
$$

- Remark: In the case of simple linear regression, R^{2} is the square of r, the correlation coefficient

What if \mathbf{X} is random?

- We've treating \mathbf{X} as fixed for mathematical convenience
- When \mathbf{X} is random (as it would be in an observational study), what changes (besides the fact that you'd have to add "given $\mathrm{X}^{\prime \prime}$ to all the expectations and variances)
- It turns out that all of the results still hold, if each of the random variables that make up \mathbf{X} are independent of the random error ϵ
- So once again, a confounder will cause problems, as it will introduce correlation between the explanatory variables and the error, and this could cause all manner of biases
- Remark: The random variables that make up \mathbf{X} do not have to be independent of each other, just independent of the random error

What we don't need

- So we must keep in mind the major, crucial assumption we've made today: that the model we fit is actually true and that \mathbf{X}, if it is random, must be uncorrelated with the random error
- However, it's also worth pointing out a big assumption that we didn't make: we did not assume a distribution for Y or ϵ

