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Introduction

@ In our last lecture, we discussed how to estimate the
regression coefficients

@ Our goal today is to start addressing the question: how
accurate are those estimates?

@ In particular, we will be deriving the expectation and variance
of our estimates, and some related concepts
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The expectation and

on ems:

Our assumptions for today

@ The results we will derive today are based on the following
central assumption: Suppose that

y=XB+e€ (1)

where X is a fixed n x p matrix of full column rank and € is

an n x 1 vector of random errors {¢;} which are identically

and independently distributed with mean 0 and variance o
@ In other words,

E(e)=0
Var(e) = oI
@ For the rest of this lecture, | will refer to the above set of

assumptions by saying something along the lines of “Suppose
that (1) holds”
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The expectation and

(@ ks

Expectation and variance of linear and quadratic forms

@ For today's derivations, we will need to calculate the
expectation and variance of linear and quadratic forms

@ Letting A denote a matrix of constants and x a random
vector with mean p and variance 3,

E(ATx) = ATpu
Var(ATx) = ATZA
E(xTAx) = p" Ap + tr(AX)
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The trace

@ The operator tr (defined for any square matrix) refers to the
trace of a matrix, defined as the sum of its diagonal elements:

tI‘(A) = Z A”

@ Some basic facts about traces:

tr(AB) = tr(BA)
tr(A 4+ B) = tr(A) + tr(B)
tr(cA) = ctr(A)
@ A further fact about traces that is not at all obvious but

nonetheless useful is that if a matrix A is idempotent, then
tr(A) = rank(A)
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A

3 is unbiased

@ With these facts in mind, we are ready to prove that
e Theorem: Suppose that (1) holds. Then

E(B) =8
i.e., estimating the regression coefficients by minimizing the

residual sum of squares produces an unbiased estimator

@ An important caveat here is this holds only if the model is
correct; if the model is not correct (for example, it does not
adjust for an important confounder), then estimates can be
badly biased
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@ The other important component in assessing an estimator’s
accuracy is its variance

e Theorem: Suppose that (1) holds.
Var(8) = o*(X7X) ™!

@ Note that the result is a symmetric p x p matrix with Var(Bj)
on the diagonals and Cov(3;, B;) in the off-diagonal elements
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Helpful facts

@ Observe, however, that we can't actually calculate this
variance (yet), because we don't know o2
o Before we go about deriving an unbiased estimator for o2,
let's prove the following simple results which will help simplify
our calculations:
r=(I-H)y
H and I — H are symmetric
H and I — H are idempotent
HX =X and X’H = X”
XTr=0
@ | will also state the following without proof:

rank(X) = rank(X?X) = rank(H); i.e., if X is full rank, all
of those matrices have rank p
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Trying to estimate o

e In principle, we could estimate o2 by

L 2
p— 6.
o2

but of course the {¢;} are not observable

@ We could use

>

but since our model was specifically chosen so as to reduce the
residual sum of squares, this turns out to underestimate o2

Patrick Breheny BST 760: Advanced Regression



Introduction
The expectation and variance of 3

o Consider instead the following estimator:

o _ RSS

n—p

e Theorem: Suppose that (1) holds. Then
E(6%) = o?

@ Note that this estimator reduces to the usual unbiased
estimators of variance and pooled variance in the one-sample
and pooled two-sample cases, with n — p as the degrees of
freedom

Patrick Breheny BST 760: Advanced Regression



The expectation and

Con

Estimating the variance and standard error of B

@ A reasonable estimator for the variance of ,3 is therefore
Var(8) = 6%(X"X) !

@ Furthermore, we can obtain standard errors by taking the
square root of the diagonal elements
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Decomposition of variance

@ One final interesting result for today is that one can
decompose the sample variance of y into two parts:

Var(y) = Var(j1) + Var(r)

where Var means the usual sample variance ({v;}, {f:}, and
{ri} are all observable)

@ Or equivalently,
TSS=MSS+ RSS

where

o T'SS = Total sum of squares, > (y; — 7)?
o MSS = Model sum of squares, > (fi; — ji)?
o RSS = Residual sum of squares, > 72
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The coefficient of determination

@ A useful way of summarizing how good our explanatory
variables are at explaining vy, then, is to look at the
proportional reduction in variability that our model achieves

@ This quantity is referred to as the coefficient of determination
and is denoted R?:

_ MSS

- TSS
RSS

- TSS

R2

@ Remark: In the case of simple linear regression, R? is the
square of r, the correlation coefficient
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o We've treating X as fixed for mathematical convenience

@ When X is random (as it would be in an observational study),
what changes (besides the fact that you'd have to add “given
X" to all the expectations and variances)

@ It turns out that all of the results still hold, if each of the
random variables that make up X are independent of the
random error €

@ So once again, a confounder will cause problems, as it will
introduce correlation between the explanatory variables and
the error, and this could cause all manner of biases

@ Remark: The random variables that make up X do not have

to be independent of each other, just independent of the
random error
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What we don’t need

@ So we must keep in mind the major, crucial assumption we've
made today: that the model we fit is actually true and that X,
if it is random, must be uncorrelated with the random error

@ However, it's also worth pointing out a big assumption that
we didn't make: we did not assume a distribution for Y or €
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