
Introduction
The expectation and variance of β̂

Explained variance
Concluding remarks

Multiple linear regression: Inference, Part I

Patrick Breheny

January 27

Patrick Breheny BST 760: Advanced Regression



Introduction
The expectation and variance of β̂

Explained variance
Concluding remarks

Introduction

In our last lecture, we discussed how to estimate the
regression coefficients

Our goal today is to start addressing the question: how
accurate are those estimates?

In particular, we will be deriving the expectation and variance
of our estimates, and some related concepts
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Our assumptions for today

The results we will derive today are based on the following
central assumption: Suppose that

y = Xβ + ε (1)

where X is a fixed n× p matrix of full column rank and ε is
an n× 1 vector of random errors {εi} which are identically
and independently distributed with mean 0 and variance σ2

In other words,

E(ε) = 0

Var(ε) = σ2I

For the rest of this lecture, I will refer to the above set of
assumptions by saying something along the lines of “Suppose
that (1) holds”
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Expectation and variance of linear and quadratic forms

For today’s derivations, we will need to calculate the
expectation and variance of linear and quadratic forms

Letting A denote a matrix of constants and x a random
vector with mean µ and variance Σ,

E(ATx) = ATµ

Var(ATx) = ATΣA

E(xTAx) = µTAµ + tr(AΣ)
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The trace

The operator tr (defined for any square matrix) refers to the
trace of a matrix, defined as the sum of its diagonal elements:

tr(A) =
∑
i

Aii

Some basic facts about traces:

tr(AB) = tr(BA)

tr(A + B) = tr(A) + tr(B)

tr(cA) = c tr(A)

A further fact about traces that is not at all obvious but
nonetheless useful is that if a matrix A is idempotent, then
tr(A) = rank(A)
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β̂ is unbiased

With these facts in mind, we are ready to prove that

Theorem: Suppose that (1) holds. Then

E(β̂) = β

i.e., estimating the regression coefficients by minimizing the
residual sum of squares produces an unbiased estimator

An important caveat here is this holds only if the model is
correct; if the model is not correct (for example, it does not
adjust for an important confounder), then estimates can be
badly biased
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The variance of β̂

The other important component in assessing an estimator’s
accuracy is its variance

Theorem: Suppose that (1) holds.

Var(β̂) = σ2(XTX)−1

Note that the result is a symmetric p× p matrix with Var(β̂j)

on the diagonals and Cov(β̂j , β̂k) in the off-diagonal elements
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Helpful facts

Observe, however, that we can’t actually calculate this
variance (yet), because we don’t know σ2

Before we go about deriving an unbiased estimator for σ2,
let’s prove the following simple results which will help simplify
our calculations:

r = (I−H)y

H and I−H are symmetric

H and I−H are idempotent

HX = X and XTH = XT

XT r = 0

I will also state the following without proof:
rank(X) = rank(XTX) = rank(H); i.e., if X is full rank, all
of those matrices have rank p
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Trying to estimate σ2

In principle, we could estimate σ2 by

1

n

∑
ε2i

but of course the {εi} are not observable

We could use

1

n

∑
r2i ,

but since our model was specifically chosen so as to reduce the
residual sum of squares, this turns out to underestimate σ2
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σ̂2

Consider instead the following estimator:

σ̂2 =
RSS

n− p

Theorem: Suppose that (1) holds. Then

E(σ̂2) = σ2

Note that this estimator reduces to the usual unbiased
estimators of variance and pooled variance in the one-sample
and pooled two-sample cases, with n− p as the degrees of
freedom
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Estimating the variance and standard error of β̂

A reasonable estimator for the variance of β̂ is therefore

V̂ar(β̂) = σ̂2(XTX)−1

Furthermore, we can obtain standard errors by taking the
square root of the diagonal elements
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Decomposition of variance

One final interesting result for today is that one can
decompose the sample variance of y into two parts:

V̂ar(y) = V̂ar(µ̂) + V̂ar(r)

where V̂ar means the usual sample variance ({yi}, {µ̂i}, and
{ri} are all observable)

Or equivalently,

TSS = MSS +RSS

where
TSS = Total sum of squares,

∑
(yi − ȳ)2

MSS = Model sum of squares,
∑

(µ̂i − µ̄)2

RSS = Residual sum of squares,
∑
r2i
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The coefficient of determination

A useful way of summarizing how good our explanatory
variables are at explaining y, then, is to look at the
proportional reduction in variability that our model achieves

This quantity is referred to as the coefficient of determination
and is denoted R2:

R2 =
MSS

TSS

= 1− RSS

TSS

Remark: In the case of simple linear regression, R2 is the
square of r, the correlation coefficient
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What if X is random?

We’ve treating X as fixed for mathematical convenience

When X is random (as it would be in an observational study),
what changes (besides the fact that you’d have to add “given
X” to all the expectations and variances)

It turns out that all of the results still hold, if each of the
random variables that make up X are independent of the
random error ε

So once again, a confounder will cause problems, as it will
introduce correlation between the explanatory variables and
the error, and this could cause all manner of biases

Remark: The random variables that make up X do not have
to be independent of each other, just independent of the
random error
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What we don’t need

So we must keep in mind the major, crucial assumption we’ve
made today: that the model we fit is actually true and that X,
if it is random, must be uncorrelated with the random error

However, it’s also worth pointing out a big assumption that
we didn’t make: we did not assume a distribution for Y or ε
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