Multiple linear regression: estimation and model fitting

Patrick Breheny

January 25

Introduction

- The goal of today's class is to set up a multiple regression model in terms of matrices and then solve for the regression coefficients, using the results we introduced last Thursday
- Our data set for today consists of daily measurement of air quality (in terms of ozone concentration) taken in New York during the summer of 1973

Ozone

- While the ozone layer in the upper atmosphere is beneficial and protects us from ultraviolet light, in the lower atmosphere it is a pollutant that has been linked to a number of respiratory diseases as well as heart attacks and premature death
- The EPA's national air quality standard for ozone concentration is 75 parts per billion (ppb); in Europe, the standard is 60 ppb ; and according to some studies, at-risk individuals may be adversely affected by ozone levels as low as 40 ppb
- Ozone concentrations, however, are not constant, and fluctuate quite a bit from day to day, depending on many factors

Ozone data set

The file ozone.txt contains the following variablesozone.txt

- Ozone: Ozone concentration (in ppb)
- Solar: Solar radiation (in Langleys)
- Wind: Average wind speed (in miles/hour)
- Temp: Daily high temperature (in Fahrenheit)
- Day: Day of the year, with January $1=1$, February $1=32$, etc.

We will be considering ozone concentration to be the outcome variable and the rest as explanatory variables

Scatterplot matrices

- A useful way of visualizing multivariate relationships is with scatterplot matrices:
- In R, pairs(ozone)
- In SAS, PROC SGSCATTER;

MATRIX Ozone Solar Wind Temp Day; RUN;

- Both SAS (using the DIAGONAL option) and R (using the diag.panel option) come with options allowing you to also plot things like histograms and kernel density estimates along the diagonal

Scatterplot matrix for the ozone data

The regression model

- Let Y_{i} represent the ozone concentration on day $i, x_{i 1}$ represent solar radiation on day $i, x_{i 2}$ represent wind speed on day i, and so on
- A linear regression model for ozone concentration could then be written as

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}+\epsilon_{i}
$$

- Or equivalently, letting $\mathbf{x}_{i}^{T}=\left(1, x_{i 1}, x_{i 2}, x_{i 3}, x_{i 4}\right)$,

$$
Y_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}+\epsilon_{i}
$$

- Or still equivalently, letting \mathbf{X} be the 111×5 matrix with rows \mathbf{x}_{i}^{T},

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

The design matrix

- The quantity \mathbf{X} is referred to as the design matrix
- Note that each column of \mathbf{X} corresponds to a different explanatory variable, and each row of \mathbf{X} corresponds to a different observation
- Thus, if there are p explanatory variables (counting the intercept) and n observations, \mathbf{X} will have dimension $n \times p$
- Remarks:
- The name "design matrix" is used regardless of whether \mathbf{X} was actually chosen by design (as it might be in, say, a controlled experiment) or not
- While certainly important to the scientific conclusions, whether \mathbf{X} is chosen by design or not has no impact on the statistical modeling, as \mathbf{X} is considered to be fixed (i.e., not random) in the regression setting

Solving for $\hat{\boldsymbol{\beta}}$

- Just as in simple linear regression, a reasonable way to estimate the regression coefficients is to choose the ones which minimize the residual sum of squares:

$$
\begin{aligned}
R S S & =\sum r_{i}^{2} \\
& =\mathbf{r}^{T} \mathbf{r}
\end{aligned}
$$

where $\mathbf{r}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}$ is an $n \times 1$ vector with elements
$r_{i}=y_{i}-\beta_{0}-x_{i 1} \beta_{1}-\cdots-x_{i 4} \beta_{4}$

- Proposition: Suppose $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ exists. Then the value $\hat{\boldsymbol{\beta}}$ for the regression coefficients that minimizes the residual sum of squares is given by

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

Fitting linear regression models in SAS/R

- There is essentially no difference between simple and multiple linear regression as far as the syntax in SAS/R is concerned:
- In R,
lm (Ozone ${ }^{\sim}$ Solar+Temp+Wind+Day)
- In SAS,

PROC REG;
MODEL Ozone = Solar Wind Temp Day;
RUN;

Manual fitting

We can also solve for these coefficients manually using the results we derived earlier:
y <- Ozone
$\mathrm{X}<-\operatorname{cbind}(1$, as.matrix(ozone[,-1]))
beta <- solve(t(X) \%*\% X) \%*\% t(X) \%*\% y
Notes:

- cbind: binds objects together by column (there is also an rbind column for rows)
- t : Take the transpose of a matrix
- solve: Take the inverse of a matrix
- \%*\%: Matrix multiplication

Comparison to univariate solutions

- Below is a table comparing the estimates obtained from simple linear regression and multiple regression

	Multiple regression	Simple regression
Solar	0.05	0.13
Wind	-3.32	-5.73
Temp	1.83	2.44
Day	-0.08	0.10

- Keep in mind the interpretation:
- As wind speed goes up by 1 mile/hour, ozone levels go down by 5.7 ppb
- As wind speed goes up by 1 mile/hour, but solar radiation, temperature, and day of the year stay the same, ozone levels go down by 3.3 ppb

Comparison to univariate solutions (cont'd)

Remarks:

- When unadjusted for confounding correlations (especially between wind and temperature), simple linear regression systematically overestimates the effect of the explanatory variables
- This is the pattern observed in this particular data set, but it is not a rule: systematic underestimation can also occur

Standardized regression coefficients

- Note that regression coefficients are dependent on the scale of measurement
- For example, if we measured temperature in Celsius instead of Fahrenheit, its regression coefficient would be 3.29 instead of 1.83
- Thus, looking directly at regression coefficients has the potential to be misleading in terms of judging relative importance

Standardized regression coefficients

- In the univariate case, correlation is often used to put measurements on a common scale
- As we saw last week,

$$
r=\hat{\beta} \frac{s_{x}}{s_{y}}
$$

- Applying this logic to multiple regression yields

	Original		Standardized	
	Multiple	Simple	Multiple	Simple
Solar	0.05	0.13	0.14	0.35
Wind	-3.32	-5.73	-0.35	-0.61
Temp	1.83	2.44	0.52	0.70
Day	-0.08	0.10	-0.11	0.14

Standardized regression coefficients in R/SAS

- Note that this is equivalent to standardizing all the variables, then performing the regression:

```
lm(Ozone ~0+Solar+Wind+Temp+Day,
    data=as.data.frame(scale(ozone)))
```

- In SAS, one can obtain the standardized regression coefficients with the STB option:
PROC REG;
MODEL Ozone = Solar Wind Temp Day / STB;
RUN;

The hat matrix

- Let $\hat{\mathbf{y}}$ denote the fitted values of \mathbf{y} arising from the multiple regression model
- Note that

$$
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{X} \hat{\boldsymbol{\beta}} \\
& =\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\mathbf{H y}
\end{aligned}
$$

where $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$

- The matrix \mathbf{H} is often called the hat matrix, because it "puts the hat on $y^{\prime \prime}$
- It is also called the projection matrix because it projects \mathbf{y} onto the column space of \mathbf{X} (the vector space spanned by the columns of \mathbf{X})

Predictions

- An actual prediction of the ozone level for a new day not used in the fitting of the model would be

$$
\hat{\mu}=\mathbf{x}^{T} \hat{\boldsymbol{\beta}}
$$

where x is the vector containing that day's wind speed, temperature, solar radiation, and day (along with a 1 for the intercept)

- So, for example, the predicted ozone level on day 274 , if that day was 70 degrees with 180 Langleys of solar radiation and 15 mph wind speed, would be 5.16 ppb
- If that day instead had a temperature of 90 and a wind speed of 5 mph , our predicted ozone level would be 74.9

The Hessian matrix

- Thus far, we have been somewhat loose in claiming that setting the derivative equal to zero is equivalent to minimizing the residual sum of squares
- To actually prove this, we need the multivariate version of the "second derivative test"
- Let $\nabla_{\mathbf{x}}^{2} f(\mathbf{x})$ denote the second derivative of a function $f(\mathbf{x})$:

$$
\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) \equiv \frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{T}}=\frac{\partial}{\partial \mathbf{x}}\left(\frac{\partial}{\partial \mathbf{x}} f(\mathbf{x})\right)
$$

This matrix is referred to as the Hessian of the function f (after the German mathematician Ludwig Hesse)

The multivariate second derivative test

- Theorem: Suppose f is a scalar-valued function of a vector \mathbf{x} and that $\nabla_{\mathbf{x}}^{2} f(\mathbf{x})$ is positive definite. If \mathbf{x}_{0} is a point satisfying $\frac{\partial}{\partial \mathbf{x}} f\left(\mathbf{x}_{0}\right)=\mathbf{0}$, then \mathbf{x}_{0} is a unique global minimum of $f(\mathbf{x})$.
- In the linear regression case,

$$
\nabla_{\boldsymbol{\beta}}^{2} R S S=2 \mathbf{X}^{T} \mathbf{X}
$$

- This quantity is positive definite if and only if the rank of \mathbf{X} is equal to p (i.e., \mathbf{X} has full column rank)

Summary

To summarize, there are two possibilities:

- \mathbf{X} is full rank, $\mathbf{X}^{T} \mathbf{X}$ is positive definite and invertible, and there is exactly one unique value of $\boldsymbol{\beta}$ which minimizes the RSS
- The rank of \mathbf{X} is less than $p, \mathbf{X}^{T} \mathbf{X}$ is positive semidefinite, not invertible, and there are an infinite number of solutions which minimize the $R S S$

Example: Non-full-rank design

- For example, suppose we define a new variable in our ozone data which is a linear combination of the others, and try to fit the model:

Extra <- 3*Solar - 2*Wind + 0.5*Temp
lm(Ozone ${ }^{\text {S Solar+Wind+Temp+Day+Extra) }}$
XX <- cbind(1,Solar,Wind,Temp,Day,Extra)
solve(crossprod(XX))

- No unique solution for $\hat{\boldsymbol{\beta}}$ exists; multiple values produce the exact same fitted values $\hat{\boldsymbol{\mu}}$ and thus the exact same $R S S$
- Remark: although $\hat{\boldsymbol{\beta}}$ is not unique, the fitted values $\hat{\boldsymbol{\mu}}$ are unique, as are all predictions of future observations

