Matrix algebra

Patrick Breheny

January 20

Introduction

- The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations
- The mathematical constructs that allow us to do this in a relatively simple and straightforward was are called matrices, and the tools describing their manipulations are the tools of matrix algebra
- The goal of this class is to introduce the important definitions, results, operations, and concepts that we will be use constantly in the rest of the course
- Note: You may not see why some of these definitions/results are important right away, but we will use them in the course and I think you'll benefit from having them all in one set of notes

Matrices and vectors

- A matrix is a collection of numbers arranged in a rectangular array of rows and columns, such as

$$
\left[\begin{array}{rr}
3 & 2 \\
4 & -1 \\
-1 & 2
\end{array}\right]
$$

- A matrix with r rows and c columns is said to be an $r \times c$ matrix (e.g., the matrix above is a 3×2 matrix)
- In the degenerate case where a matrix has just a single row or column, it is said to be a vector, such as

$$
\left[\begin{array}{r}
3 \\
-1
\end{array}\right]
$$

Matrix and vector notation

- Vectors and matrices are denoted in lower- and upper-case boldface, respectively (e.g., x is a scalar, \mathbf{x} is a vector, and \mathbf{X} is a matrix)
- By convention, vectors are column vectors - i.e., a vector of n numbers is an $n \times 1$ matrix, not a $1 \times n$ matrix
- It is worth pointing out that the use of upper/lower case in matrix algebra differs from that in probability, where upper/lower case is used to distinguish random variables from fixed quantities
- Thus, in this course, a vector will be denoted \mathbf{y} regardless of whether it is fixed or random; if the distinction is important and not clear from context, random/fixed vectors will be distinguished in some other way

Matrix and vector notation (cont'd)

- The $i j$ th element of a matrix \mathbf{M} is denoted by $M_{i j}$ or $(\mathbf{M})_{i j}$; e.g., letting \mathbf{M} denote the matrix on the third slide of today's lecture, $M_{11}=3,(\mathbf{M})_{32}=2$, and so on
- Similarly, the j th element of a vector \mathbf{v} is denoted v_{j}; e.g., letting \mathbf{v} denote the vector on the same slide, $v_{1}=3$

Transposition

- It is often useful to switch the rows and columns of a matrix around
- The resulting matrix is called the transpose of the original matrix, and denoted with a superscript ${ }^{T}$ or an apostrophe '

$$
\mathbf{M}=\left[\begin{array}{rr}
3 & 2 \\
4 & -1 \\
-1 & 2
\end{array}\right] \quad \mathbf{M}^{T}=\left[\begin{array}{rrr}
3 & 4 & -1 \\
2 & -1 & 2
\end{array}\right]
$$

- Note that $M_{i j}=M_{j i}^{T}$, and that if \mathbf{M} is an $r \times c$ matrix, \mathbf{M}^{T} is a $c \times r$ matrix

Addition

- There are two kinds of addition operations for matrices
- The first is scalar addition:

$$
\mathbf{M}+2=\left[\begin{array}{rr}
3+2 & 2+2 \\
4+2 & -1+2 \\
-1+2 & 2+2
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
6 & 1 \\
1 & 4
\end{array}\right]
$$

- The other kind is matrix addition:

$$
\mathbf{M}+\mathbf{M}=\left[\begin{array}{rr}
3 & 2 \\
4 & -1 \\
-1 & 2
\end{array}\right]+\left[\begin{array}{rr}
3 & 2 \\
4 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
6 & 4 \\
8 & -2 \\
-2 & 4
\end{array}\right]
$$

- Formally, $(\mathbf{A}+\mathbf{B})_{i j}=A_{i j}+B_{i j}$
- Note that only matrices of the same dimension can be added to each other - it makes no sense to add a 4×5 matrix to a 2×9 matrix

Scalar multiplication

- There are also two common kinds of multiplication for matrices
- The first is scalar multiplication:

$$
4 \mathbf{M}=4\left[\begin{array}{rr}
3 & 2 \\
4 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
12 & 8 \\
16 & -4 \\
-4 & 8
\end{array}\right]
$$

- Formally, $(c \mathbf{M})_{i j}=c M_{i j}$

Vector multiplication

- The other kind is matrix multiplication
- To get an idea of how matrix multiplication works, let's start with the simpler case of vector multiplication
- Suppose \mathbf{u} and \mathbf{v} are two $n \times 1$ vectors; their product is defined as

$$
\begin{aligned}
\mathbf{u}^{T} \mathbf{v} & =\sum_{j} u_{j} v_{j} \\
{\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right] } & =6-2=4
\end{aligned}
$$

- Specifically, this is called their inner product (there is also an outer product, but don't worry about that right now)

Matrix multiplication

- Now, the product of two matrices, $\mathbf{A B}$, is defined by taking all the (inner) products of A's rows with B's columns:

$$
\begin{gathered}
(\mathbf{A B})_{i k}=\sum_{k} A_{i j} B_{j k} \\
{\left[\begin{array}{rrr}
1 & 2 & 1 \\
4 & -1 & 0
\end{array}\right]\left[\begin{array}{rr}
3 & 2 \\
0 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
2 & 2 \\
12 & 9
\end{array}\right]}
\end{gathered}
$$

- Note that
- Matrix multiplication is only defined if the number of columns of \mathbf{A} matches the number of rows of \mathbf{B}
- If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times p$ matrix, then $\mathbf{A B}$ is an $m \times p$ matrix

Elementary vs. matrix algebra

- Most aspects of elementary algebra carry over to matrix algebra:

$$
\begin{array}{rlrl}
\mathbf{A}+\mathbf{B} & =\mathbf{B}+\mathbf{A} & (\mathbf{A}+\mathbf{B})+\mathbf{C} & =\mathbf{A}+(\mathbf{B}+\mathbf{C}) \\
(\mathbf{A B}) \mathbf{C} & =\mathbf{A}(\mathbf{B C}) & \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A} \mathbf{C} \\
k(\mathbf{A}+\mathbf{B}) & =k \mathbf{A}+k \mathbf{B} & &
\end{array}
$$

- One important exception, however, is that $\mathbf{A B} \neq \mathbf{B A}$
- The order of matrix multiplication matters, and we must remember to, for instance, "left multiply" both sides of an equation by a matrix \mathbf{M} to preserve equality
- This is tricky at first, but you get used to it

Restating regression with matrices

- We can write out simple linear regression in terms of vectors and matrices as follows:

$$
\mathbf{y}=\alpha+\beta \mathbf{x}+\boldsymbol{\epsilon}
$$

- Now, let $\boldsymbol{\beta}=(\alpha \beta)$ and \mathbf{X} be an $n \times 2$ matrix whose first column is a n-dimensional vector of all 1 s and whose second column is \mathbf{x}
- With this notation, we can write the regression equation as

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- Note that all the dimensions are consistent: this is an important check to perform in general to make sure that the matrix equations you're writing down make sense

Square and symmetric matrices

- There are a number of special kinds of matrices that are important to know about, because certain theorems only apply to certain kinds of matrices
- For example, in the special case where a matrix has the same numbers of rows and columns, it is said to be square
- If $\mathbf{A}^{T}=\mathbf{A}$, the matrix is said to be symmetric

$$
\text { Symmetric: }\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right] \quad \text { Not symmetric: }\left[\begin{array}{rr}
3 & 2 \\
0 & -1
\end{array}\right]
$$

- Note that a matrix cannot be symmetric unless it is square

Diagonal and identity matrices

- The elements $A_{i i}$ of a matrix are called its diagonal entries; a matrix for which $A_{i j}=0$ for all $i \neq j$ is said to be a diagonal matrix:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

- Consider in particular the following diagonal matrix:

$$
\mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Diagonal and identity matrices (cont'd)

- Note that this matrix has the interesting property that $(\mathbf{A I})_{i j}=A_{i j}$ for all i, j
- In other words, $\mathbf{A I}=\mathbf{I A}=\mathbf{A}$
- Because of this property, \mathbf{I} is referred to as the identity matrix
- Note: some authors use \mathbf{I}_{k} to mean the $k \times k$ identity matrix; I will simply use \mathbf{I} with the understanding that \mathbf{I} is whatever dimension it needs to be in order to be conformable (for its dimensions to match the other matrices in the equation)

Some other matrices

- Some other notations which are commonly used are $\mathbf{1}$, the vectors of 1 s , and $\mathbf{0}$, the vector of zeros:

$$
\mathbf{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Unfortunately, there is no "capital zero"; matrices of zeros or ones are usually represented by explicitly specifying their dimensions, as in $\mathbf{0}_{2 \times 2}$ or $\mathbf{1}_{4 \times 5}$
- The vector \mathbf{e}_{j} is also useful: it has element $e_{j}=1$ and $e_{k}=0$ for all other elements:

$$
\mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

The matrix inverse

- Suppose $\mathbf{A x}=\mathbf{B}$ and we want to solve for $\mathbf{x} \ldots$...can we "divide" by A?
- Sort of - by multiplying both sides by the inverse of \mathbf{A}
- If a matrix \mathbf{A}^{-1} satisfies $\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$, then \mathbf{A}^{-1} is the inverse of \mathbf{A}
- If we have \mathbf{A}^{-1}, then $\mathbf{x}=\mathbf{A}^{-1} \mathbf{B}$ in the equation above
- Note that, by this definition, only square matrices can have inverses; this can be extended by defining a left inverse and right inverse, but we're not going to need them in this class

Orthogonality

- If two vectors \mathbf{u} and \mathbf{v} satisfy $\mathbf{u}^{T} \mathbf{v}=0$, they are said to be orthogonal to each other
- If all the columns and rows of a matrix \mathbf{A} are orthogonal to each other and satisfy $\mathbf{a}^{T} \mathbf{a}=1$, then \mathbf{A} (transposed) can serve as its own inverse: $\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}=\mathbf{I}$
- In this case, the matrix \mathbf{A} is said to be an orthogonal matrix
- If a matrix \mathbf{X} is not square, then it is possible that $\mathbf{X}^{T} \mathbf{X}=\mathbf{I}$ but $\mathbf{X X}{ }^{T} \neq \mathbf{I}$; in this case, the matrix is said to be column orthogonal, although in statistics it is common to refer to these matrices as orthogonal also
- A somewhat related definition is that a matrix is said to be idempotent if $\mathbf{A A}=\mathbf{A}$

One and only one inverse?

- Does every matrix have one and only one inverse?
- Well, if a matrix has an inverse, it is said to be invertible, and yes, all invertible matrices have exactly one, unique inverse
- However, not every matrix is invertible
- For example, there are no values of a, b, c, and d that satisfy

$$
\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Linear dependence

- Why didn't the matrix on the previous slide have an inverse?
- Well, there were four equations and four unknowns, but some of those equations contradicted each other
- The term for this situation is linear dependence

Linear combinations and linear independence

- If you have a collection of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, then you can form new vectors from linear combinations of the old vectors: $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$
- A collection of vectors is said to be linearly independent if none of them can be written as a linear combination of the others; if it can, then they are linearly dependent
- This is the key to whether a matrix is invertible or not: a matrix \mathbf{A} is invertible if and only if its columns (or rows) are linearly independent
- Note that the columns of our earlier matrix were not linearly independent, since $2\left(\begin{array}{ll}2 & 1\end{array}\right)=\left(\begin{array}{ll}4 & 2\end{array}\right)$

Rank

- The rank of a matrix is the number of linearly independent columns (or rows) it has
- If they're all linearly independent, then the matrix is said to be of full rank
- This is a very important concept in regression, because we'll have to take inverses to solve for the regression coefficients $\boldsymbol{\beta}$, and if our matrix \mathbf{X} that contains all the explanatory variables is not full rank, then we won't be able to solve for $\boldsymbol{\beta}$

Additional helpful identities

- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$

Expectation and variance

- As statisticians, we need to deal with vectors of random quantities like \mathbf{y} and $\boldsymbol{\epsilon}$, so we need to define the expectation and variance of random vectors
- If $\mathbf{u}=\left(U_{1} U_{2} \cdots U_{n}\right)$ is a vector of random variables, then $\mathrm{E}(\mathbf{u})=\left(\mathrm{E}\left(U_{1}\right) \mathrm{E}\left(U_{2}\right) \cdots \mathrm{E}\left(U_{n}\right)\right)$
- Meanwhile, Varu is an $n \times n$ matrix with elements

$$
(\operatorname{Var}(\mathbf{u}))_{i j}=\mathrm{E}\left\{\left(U_{i}-\mu_{i}\right)\left(U_{j}-\mu_{j}\right)\right\}
$$

where $\mu_{i}=\mathrm{E}\left(U_{i}\right)$

- The matrix $\operatorname{Var}(\mathbf{u})$ is referred to as the variance-covariance matrix of \mathbf{u}

Positive definite

- With scalars, we know that x^{2} is always positive (well, at least, non-negative)
- The equivalent notion for matrices is that $\mathbf{X}^{T} \mathbf{X}$ is said to be a "positive definite" matrix
- To be more precise, if \mathbf{X} is full rank, then $\mathbf{X}^{T} \mathbf{X}$ is positive definite; if \mathbf{X} is singular (not of full rank), then $\mathbf{X}^{T} \mathbf{X}$ is said to be positive semidefinite
- This comes up from time to time in statistics; for example, a covariance matrix is always positive definite (or possibly positive semidefinite if, for example, some random variables have variance 0)

Matrix calculus

- Last but not least, we also need just a little bit of matrix calculus
- Specifically, the derivative of a scalar with respect to a vector is defined as

$$
\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\frac{\partial y}{\partial x_{2}} \\
\vdots \frac{\partial y}{\partial x_{m}}
\end{array}\right]
$$

- The derivative of a vector \mathbf{y} with respect to a vector \mathbf{x} has columns $\frac{\partial y_{1}}{\partial \mathbf{x}}, \frac{\partial y_{2}}{\partial \mathbf{x}}, \ldots$ (i.e., if \mathbf{y} is an n-dimensional vector and \mathbf{x} is an m-dimensional vector, $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is an $m \times n$ matrix)

Linear and quadratic forms

- Two kinds of scalars that appear often are linear and quadratic forms
- Derivatives of linear forms:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{x}} \mathbf{a}^{T} \mathbf{x} & =\mathbf{a} \\
\frac{\partial}{\partial \mathbf{x}} \mathbf{A}^{T} \mathbf{x} & =\mathbf{A}
\end{aligned}
$$

- Derivatives of quadratic forms:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{T} \mathbf{A} \mathbf{x} & =\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x} \\
& =2 \mathbf{A} \mathbf{x} \quad \text { if } \mathbf{A} \text { is symmetric }
\end{aligned}
$$

Chain and product rules

- Lastly, we need the chain rule and the product rule:

$$
\begin{aligned}
\frac{\partial \mathbf{z}}{\partial \mathbf{x}} & =\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \\
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{z}^{T} \mathbf{y}\right) & =\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \mathbf{y}+\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \mathbf{z}
\end{aligned}
$$

- It is important to note that

$$
\begin{gathered}
\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \neq \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \\
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{z}^{T} \mathbf{y}\right) \neq \mathbf{y} \frac{\partial \mathbf{z}}{\partial \mathbf{x}}+\mathbf{z} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}
\end{gathered}
$$

