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Introduction

@ The mathematics of multiple regression revolves around
ordering and keeping track of large arrays of numbers and
solving systems of equations

@ The mathematical constructs that allow us to do this in a
relatively simple and straightforward was are called matrices,
and the tools describing their manipulations are the tools of
matrix algebra

@ The goal of this class is to introduce the important
definitions, results, operations, and concepts that we will be
use constantly in the rest of the course

@ Note: You may not see why some of these definitions/results are
important right away, but we will use them in the course and | think
you'll benefit from having them all in one set of notes
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Basics

Matrices and vectors

@ A matrix is a collection of numbers arranged in a rectangular
array of rows and columns, such as

3 2
4 -1
-1 2

@ A matrix with 7 rows and ¢ columns is said to be an r x ¢
matrix (e.g., the matrix above is a 3 x 2 matrix)

@ In the degenerate case where a matrix has just a single row or
column, it is said to be a vector, such as

]
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Inversion and re

lcu

Matrix and vector notation

@ Vectors and matrices are denoted in lower- and upper-case
boldface, respectively (e.g., x is a scalar, x is a vector, and X
is a matrix)

@ By convention, vectors are column vectors — i.e., a vector of n
numbers is an n X 1 matrix, not a 1 X n matrix

@ It is worth pointing out that the use of upper/lower case in
matrix algebra differs from that in probability, where
upper/lower case is used to distinguish random variables from
fixed quantities

@ Thus, in this course, a vector will be denoted y regardless of
whether it is fixed or random; if the distinction is important
and not clear from context, random /fixed vectors will be
distinguished in some other way
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Inversion and

Matrix and vector notation (cont'd)

@ The ijth element of a matrix M is denoted by M;; or (M);;;
e.g., letting M denote the matrix on the third slide of today's
lecture, My11 = 3, (M)32 =2, and so on

@ Similarly, the jth element of a vector v is denoted v;; e.g.,
letting v denote the vector on the same slide, v; = 3
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Inversion and

Transposition

@ It is often useful to switch the rows and columns of a matrix
around

@ The resulting matrix is called the transpose of the original
matrix, and denoted with a superscript © or an apostrophe

B r_ [3 4 -1
: M_[2—12

!/

M

Il
W

o Note that M;; = MY and that if M is an r X ¢ matrix, M”

Ji
is a ¢ X r matrix
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Basics

Inversion and

@ There are two kinds of addition operations for matrices
@ The first is scalar addition:

3+2 242 5 4
M+2= 442 —-14+2 | =16 1
—142 2+2 1 4
@ The other kind is matrix addition:
3 2 3 2 6 4
M+M = 4 -1 | + 4 -1 | = 8 -2
-1 2 -1 2 -2 4

FormaIIy, (A + B)” = Aij + Bij

Note that only matrices of the same dimension can be added
to each other — it makes no sense to add a 4 x 5 matrix to a
2 X 9 matrix
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Inversion and rel

Scalar multiplication

@ There are also two common kinds of multiplication for
matrices

@ The first is scalar multiplication:

3 2 12 8
AM =4 4 -1 |=1| 16 —4
-1 2 -4 8

e Formally, (cM);; = cM;;
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Vector multiplication

@ The other kind is matrix multiplication

@ To get an idea of how matrix multiplication works, let's start
with the simpler case of vector multiplication

@ Suppose u and v are two n X 1 vectors; their product is
defined as

T _§ "y
u'v= UV
J

[ 3 2][_?}:6—2:4

e Specifically, this is called their inner product (there is also an
outer product, but don't worry about that right now)
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Inversion and

Matrix multiplication

@ Now, the product of two matrices, AB, is defined by taking
all the (inner) products of A's rows with B's columns:

(AB), = Z Ai;Bjy,
A

[1 21} - _[22}
4 -1 0f| T, 12 9

@ Note that
e Matrix multiplication is only defined if the number of columns
of A matches the number of rows of B
e If A isan m x n matrix and B is an n X p matrix, then AB is
an m X p matrix
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Inversion and r

Matrix IS

Elementary vs. matrix algebra

@ Most aspects of elementary algebra carry over to matrix
algebra:

A+B=B+A (A+B)+C=A+(B+C)
(AB)C = A(BC) A(B+C)=AB+AC
k(A +B) = kA + kB

@ One important exception, however, is that AB # BA

@ The order of matrix multiplication matters, and we must
remember to, for instance, “left multiply” both sides of an
equation by a matrix M to preserve equality

@ This is tricky at first, but you get used to it
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Restating regression with matrices

@ We can write out simple linear regression in terms of vectors
and matrices as follows:

y=a+px+e

@ Now, let 8 = (o 8) and X be an n x 2 matrix whose first
column is a n-dimensional vector of all 1s and whose second
column is x

e With this notation, we can write the regression equation as
y=XB+¢€

@ Note that all the dimensions are consistent: this is an
important check to perform in general to make sure that the
matrix equations you're writing down make sense
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Square and symmetric matrices

There are a number of special kinds of matrices that are
important to know about, because certain theorems only
apply to certain kinds of matrices

For example, in the special case where a matrix has the same
numbers of rows and columns, it is said to be square

If AT = A, the matrix is said to be symmetric

Symmetric: L 2 Not symmetric: 3 2
ymmetric: | | ot sy elc.O_1

Note that a matrix cannot be symmetric unless it is square
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Inversion and

Diagonal and identity matrices

@ The elements A;; of a matrix are called its diagonal entries; a

matrix for which A;; = 0 for all i # j is said to be a diagonal
matrix:

1 00
0 -1 0
0 0 5
e Consider in particular the following diagonal matrix:

1
I=]0
0

S = O

0
0
1
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Diagonal and identity matrices (cont'd)

Note that this matrix has the interesting property that
(AI)” = Aij for all i, ]
In other words, AT =TA = A

Because of this property, I is referred to as the identity matrix

Note: some authors use Iy to mean the k x k identity matrix;
I will simply use I with the understanding that I is whatever
dimension it needs to be in order to be conformable (for its
dimensions to match the other matrices in the equation)
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Some other matrices

@ Some other notations which are commonly used are 1, the
vectors of 1s, and 0, the vector of zeros:

1 0
1=|1 0=1]0
1 0

@ Unfortunately, there is no “capital zero”; matrices of zeros or
ones are usually represented by explicitly specifying their
dimensions, as in Ogyx9 or 1445

@ The vector e; is also useful: it has element e; = 1 and ¢, = 0
for all other elements:

0
€y = 1
0
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Inversion and related

The matrix inverse

@ Suppose Ax = B and we want to solve for x ...can we
“divide” by A7

@ Sort of — by multiplying both sides by the inverse of A

o If a matrix A~! satisfies AA™! = A7'A =1, then A~ !is
the inverse of A

o If we have A™!, then x = A~!'B in the equation above

@ Note that, by this definition, only square matrices can have inverses;
this can be extended by defining a left inverse and right inverse, but
we're not going to need them in this class
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If two vectors u and v satisfy u’v = 0, they are said to be
orthogonal to each other

If all the columns and rows of a matrix A are orthogonal to
each other and satisfy a’a = 1, then A (transposed) can
serve as its own inverse: ATA = AAT =1

In this case, the matrix A is said to be an orthogonal matrix

If a matrix X is not square, then it is possible that X”X =1
but XXT # I, in this case, the matrix is said to be column
orthogonal, although in statistics it is common to refer to
these matrices as orthogonal also

A somewhat related definition is that a matrix is said to be
idempotent if AA = A
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Inversion and related c
Random

One and only one inverse?

@ Does every matrix have one and only one inverse?

o Well, if a matrix has an inverse, it is said to be invertible, and
yes, all invertible matrices have exactly one, unique inverse

@ However, not every matrix is invertible

@ For example, there are no values of a, b, ¢, and d that satisfy

tHIHR
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Linear dependence

@ Why didn’t the matrix on the previous slide have an inverse?

@ Well, there were four equations and four unknowns, but some
of those equations contradicted each other

@ The term for this situation is linear dependence
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Inversion and related

o If you have a collection of vectors vi,va,...,Vv,, then you
can form new vectors from linear combinations of the old
vectors: c1vy +covo 4 -+ vy

@ A collection of vectors is said to be linearly independent if
none of them can be written as a linear combination of the
others; if it can, then they are linearly dependent

@ This is the key to whether a matrix is invertible or not: a
matrix A is invertible if and only if its columns (or rows) are
linearly independent

@ Note that the columns of our earlier matrix were not linearly
independent, since 2(2 1) = (4 2)
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@ The rank of a matrix is the number of linearly independent
columns (or rows) it has

o If they're all linearly independent, then the matrix is said to be
of full rank

@ This is a very important concept in regression, because we'll
have to take inverses to solve for the regression coefficients 3,
and if our matrix X that contains all the explanatory variables
is not full rank, then we won't be able to solve for 3
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o (A+B) =AT +BT
o (AB)T = BTAT

o (AB)"l =B1A!

° (AT)—l (A—I)T
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Expectation and variance

@ As statisticians, we need to deal with vectors of random
quantities like y and €, so we need to define the expectation
and variance of random vectors

o Ifu= (U Uy ---U,) is a vector of random variables, then
E(u) = (E(U1) E(Uz) ---E(Uy))
@ Meanwhile, Varu is an n X n matrix with elements

(Var(u));; = E{(U; — 1) (Uj — pj) }

where p; = E(U;)

@ The matrix Var(u) is referred to as the variance-covariance
matrix of u
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Positive definite

o With scalars, we know that z2 is always positive (well, at
least, non-negative)

o The equivalent notion for matrices is that XX is said to be
a “positive definite” matrix

@ To be more precise, if X is full rank, then XTX is positive
definite; if X is singular (not of full rank), then X7 X is said
to be positive semidefinite

@ This comes up from time to time in statistics; for example, a
covariance matrix is always positive definite (or possibly
positive semidefinite if, for example, some random variables
have variance 0)
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m Ol
Matrix calculus

Matrix calculus

@ Last but not least, we also need just a little bit of matrix
calculus
@ Specifically, the derivative of a scalar with respect to a vector

is defined as
Oy
0
Ay 0y
A Oz
0x . oy
" 0xTm
@ The derivative of a vector y with respect to a vector x has
columns 2 %2 (je. ify is an n-dimensional vector and
ox '’ Ox

X is an m-dimensional vector, g—i is an m X m matrix)
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Inversion and

Matrix calculus

Linear and quadratic forms

@ Two kinds of scalars that appear often are linear and
quadratic forms

@ Derivatives of linear forms:

9
8—Xa X=a
0
—ATx=A
ox x

@ Derivatives of quadratic forms:

O Ta. _ T
P Ax=(A+A")x

= 2Ax if A is symmetric
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Inversion and r
n ve
Matrix calculus

Chain and product rules

@ Lastly, we need the chain rule and the product rule:

0z _oyon
ox  0x Oy
0, r 0z oy

@ It is important to note that

05, 00y
ox ' dy ox

0, r 0z oy

B_X( Y)#ya—x‘f‘za—x
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