# Simple linear regression 

Patrick Breheny

January 18

## Introduction

- Today's lecture/lab is about fitting a regression line to a scatter plot of data, also known as simple linear regression
- This is interesting both by itself and as a precursor to multiple linear regression


## Pearson's height data

- Statisticians in Victorian England were fascinated by the idea of quantifying hereditary influences
- Two of the pioneers of modern statistics, the Victorian Englishmen Francis Galton and Karl Pearson were quite passionate about this topic
- In pursuit of this goal, they measured the heights of 1,078 fathers and their (fully grown) sons
- Introducing standard regression notation, we have $n=1,078$ pairs of observations $\left\{x_{i}, y_{i}\right\}$, in which $x_{i}$ is the height of the father in family $i$, and $y_{i}$ is the height of the son


## Importing the data

- All the data sets for this class will be provided in a tab-delimited format
- In R, such files can be read in via pearson <- read.delim("pearson.txt")
- In SAS, you can import the data through File $\rightarrow$ Import Data; when it asks you for the data source, select "Tab Delimited File (.txt)" from the drop-down menu


## Plotting the data

- In R, the data can be plotted with either plot(pearson\$Father, pearson\$Son)
or
attach(pearson)
plot(Father,Son)
- In SAS, the data can be plotted via

PROC SGPLOT DATA=Pearson; SCATTER X=Father Y=Son;
RUN;

## Scatter plot of Pearson's height data



## Observations about the scatter plot

- Taller fathers tend to have taller sons
- The scatter plot shows how strong this association is - there is a tendency, but there are plenty of exceptions


## Simple linear regression

- Simple linear regression aims to draw a line through those points which
- Approximates the average height of the sons, given the heights of their fathers
- Can be used to predict a son's height, given the height of his father
- Can be used to draw conclusions about the heredity of height
- The regression line, like all lines, has an equation of the form

$$
y=\alpha+\beta x
$$

## Fitting the regression line

- However, the heights of fathers and sons clearly do not fall exactly on a line; there are random errors:

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

- Note that $x_{i}$ and $y_{i}$ are observed, while $\alpha, \beta$, and $\left\{\epsilon_{i}\right\}$ are not
- The parameters of interest are $\alpha$ and $\beta$; i.e., we are interested in obtaining the estimates $\hat{\alpha}$ and $\hat{\beta}$, which in turn determine the regression line


## Fitted values and residuals

- Suppose we use the regression line to predict $y_{i}$
- The resulting prediction is called the fitted value:

$$
\hat{\mu}_{i}=\hat{\alpha}+\hat{\beta} x_{i}
$$

(this quantity is also called the "predicted value", though this is potentially a little misleading, as you're not really "predicting" $y_{i}$, since you've already observed it)

- The amount by which each fitted value differs from the observed value $y_{i}$ is called the residual:

$$
r_{i}=y_{i}-\hat{\mu}_{i}
$$

## The method of least squares

- We want a regression line that fits the data well (i.e. does a good job of passing through the average $y$ for a given $x$ )
- Regression lines are fit by minimizing the residual sum of squares:

$$
R S S=\sum_{i} r_{i}^{2}
$$

(we will discuss the justifications for this in a moment)

- Proposition: The values $\{\hat{\alpha}, \hat{\beta}\}$ which minimize the residual sum of squares are given by

$$
\begin{aligned}
& \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x} \\
& \hat{\beta}=\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

## Obtaining least squares estimates in R/SAS

- These estimates can be obtained via
- In R:
$\operatorname{lm}$ (Son~Father)
- In SAS:

PROC REG;
MODEL Son = Father;
RUN;

- They both yield the estimates $\hat{\alpha}=33.9, \hat{\beta}=0.514$


## Reproducing these estimates manually

These estimates can also be obtained manually using the solution that we derived earlier:

```
x <- pearson[,1]
y <- pearson[,2]
xx <- x - mean(x)
yy <- y - mean(y)
beta <- sum(xx*yy)/sum(xx^2)
alpha <- mean(y) - beta*mean(x)
```


## Adding the regression line to the plot

Let's add the regression line to the plot:

- In R:
abline(alpha,beta)
- In SAS:

PROC SGPLOT;
REG X=Father Y=Son;
RUN;

## The regression line for Pearson's height data



## There are two regression lines

- When we regress $y$ on $x$, we are predicting $y$ based on $x$ - not the other way around
- This matters, because the outcome and explanatory variables are not interchangeable with respect to estimation:

$$
\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \neq \frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

- We obtain different lines, and different predictions, depending on which variable is chosen as the outcome


## The two regression lines



## Justifications for least squares

- The original justification for least squares was that it was convenient to work with: $\sum r_{i}^{2}$ is differentiable, whereas, for example, $\sum_{i}\left|r_{i}\right|$ is not
- An additional justification is that if $y_{i}$ follows a normal distribution, $\hat{\alpha}$ and $\hat{\beta}$ are the maximum likelihood estimates:

$$
l(\alpha, \beta) \propto-\sum\left(y_{i}-\alpha-\beta x_{i}\right)^{2}
$$

- A further justification, which we discuss in more detail later in the course, is that the method of least squares produces the best (i.e. minimum variance) linear unbiased estimator of $\alpha$ and $\beta$


## Regression and correlation

- There is an intimate connection between regression and correlation
- Given the regression line, you can calculate the correlation, and vice versa
- Letting $r$ denote the correlation coefficient and $s_{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$, we have

$$
\hat{\beta}=r \frac{s_{y}}{s_{x}}
$$

## Regression and correlation (cont'd)

- Furthermore, substituting this expression into $y=\alpha+\beta x$, we have

$$
\frac{y-\bar{y}}{s_{y}}=r \frac{x-\bar{x}}{s_{x}}
$$

- This neat little equation summarizes quite nicely the interplay between regression, correlation, and standardized variables
- Also note that because $r \in[-1,1]$, this equation places a bound on the slope of the regression line


## The regression and SD lines



## Simple vs. multiple regression

- A "simple" regression equation has on the right hand side an intercept, a single explanatory variable, and single slope
- A multiple regression equation has several explanatory variables, each with its own slope
- Before we study multiple regression, we will need to develop some matrix algebra tools, which is what we will do in our next lecture

