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Introduction

e Today's lecture/lab is about fitting a regression line to a
scatter plot of data, also known as simple linear regression

@ This is interesting both by itself and as a precursor to multiple
linear regression
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@ Statisticians in Victorian England were fascinated by the idea
of quantifying hereditary influences

@ Two of the pioneers of modern statistics, the Victorian
Englishmen Francis Galton and Karl Pearson were quite
passionate about this topic

@ In pursuit of this goal, they measured the heights of 1,078
fathers and their (fully grown) sons

@ Introducing standard regression notation, we have n = 1,078
pairs of observations {x;,y;}, in which z; is the height of the
father in family 4, and y; is the height of the son
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Importing the data

@ All the data sets for this class will be provided in a
tab-delimited format

@ In R, such files can be read in via
pearson <- read.delim("pearson.txt")
@ In SAS, you can import the data through File — Import

Data; when it asks you for the data source, select “Tab
Delimited File (.txt)" from the drop-down menu
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Plotting the data

@ In R, the data can be plotted with either
plot(pearson$Father,pearson$Son)
or

attach(pearson)
plot (Father,Son)

@ In SAS, the data can be plotted via

PROC SGPLOT DATA=Pearson;
SCATTER X=Father Y=Son;
RUN;
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Observations about the scatter plot

@ Taller fathers tend to have taller sons

@ The scatter plot shows how strong this association is — there
is a tendency, but there are plenty of exceptions
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Simple linear regression

@ Simple linear regression aims to draw a line through those
points which

e Approximates the average height of the sons, given the heights
of their fathers

o Can be used to predict a son's height, given the height of his
father

e Can be used to draw conclusions about the heredity of height

@ The regression line, like all lines, has an equation of the form

y=a+ fx
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Fitting the regression line

@ However, the heights of fathers and sons clearly do not fall
exactly on a line; there are random errors:

yi= o+ fri+e

o Note that x; and y; are observed, while «, 3, and {¢;} are not

@ The parameters of interest are a and [3; i.e., we are interested
in obtaining the estimates & and /3, which in turn determine
the regression line
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@ Suppose we use the regression line to predict y;

@ The resulting prediction is called the fitted value:
fii = & + fB;

(this quantity is also called the “predicted value”, though this
is potentially a little misleading, as you're not really
“predicting” y;, since you've already observed it)

@ The amount by which each fitted value differs from the
observed value y; is called the residual:

T =Y — fl
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The Regress

The method of least squares

e We want a regression line that fits the data well (i.e. does a
good job of passing through the average y for a given x)
@ Regression lines are fit by minimizing the residual sum of

squares:
RSS =Y r}
i

(we will discuss the justifications for this in a moment)
e Proposition: The values {&, 8} which minimize the residual
sum of squares are given by

bz
yi —y)(zi — T)
> (wi —x)?
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Obtaining least squares estimates in R/SAS

@ These estimates can be obtained via
o InR:
1m(Son~Father)
e In SAS:

PROC REG;
MODEL Son = Father;
RUN;

@ They both yield the estimates & = 33.9, B =0.514
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These estimates can also be obtained manually using the solution
that we derived earlier:

x <- pearsonl[,1]
y <- pearsonl[,2]

xx <- x - mean(x)
yy <- y - mean(y)

beta <- sum(xx*yy)/sum(xx~2)
alpha <- mean(y) - beta*mean(x)
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Adding the regression line to the plot

Let’s add the regression line to the plot:
@ In R:
abline(alpha,beta)
e In SAS:

PROC SGPLOT;
REG X=Father Y=Son;
RUN;
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@ When we regress y on x, we are predicting y based on x — not
the other way around

@ This matters, because the outcome and explanatory variables
are not interchangeable with respect to estimation:

> (yi —9)(zi — @) y > (yi —y)(xi — )
> (i — )2 > (yi — )2

@ We obtain different lines, and different predictions, depending
on which variable is chosen as the outcome
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Introduction
The Regression Line
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@ The original justification for least squares was that it was
convenient to work with: er is differentiable, whereas, for
example, Y |r;| is not

@ An additional justification is that if y; follows a normal
distribution, & and 8 are the maximum likelihood estimates:

(e, ) x — 3 (i — @ — f,)?

@ A further justification, which we discuss in more detail later in
the course, is that the method of least squares produces the
best (i.e. minimum variance) linear unbiased estimator of «
and 3
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Regression and correlation

Regression and correlation

@ There is an intimate connection between regression and
correlation

@ Given the regression line, you can calculate the correlation,
and vice versa

@ Letting r denote the correlation coefficient and
s2 =15 (z; — 2)% we have

A S
b=y
Sy
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Regression and correlation (cont'd)

@ Furthermore, substituting this expression into y = « + [z, we
have

@ This neat little equation summarizes quite nicely the interplay
between regression, correlation, and standardized variables

@ Also note that because r € [—1, 1], this equation places a
bound on the slope of the regression line
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Regression and correlation

The regression and SD lines
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Regression

Simple vs. multiple regression

@ A “simple” regression equation has on the right hand side an
intercept, a single explanatory variable, and single slope

@ A multiple regression equation has several explanatory
variables, each with its own slope

@ Before we study multiple regression, we will need to develop
some matrix algebra tools, which is what we will do in our
next lecture

Patrick Breheny BST 760: Advanced Regression



	Introduction
	The Regression Line
	Regression and correlation

