BST 760: Advanced Regression

Breheny

Assignment 2

Due: Thursday, January 27

1. Express the equalities from assignment 1, parts (c)-(e), in matrix form (i.e., without any summation symbols).
2. Suppose \mathbf{D} is a diagonal matrix with diagonal elements $\left\{d_{i}\right\}$. Find \mathbf{D}^{-1}.
3. Refer to slide 12 of the January 20th notes.
(a) Under what condition(s) would the columns of \mathbf{X} be orthogonal to each other?
(b) Suppose that \mathbf{X} is orthogonal, in the sense that $\mathbf{X}^{T} \mathbf{X}=\mathbf{I}$. How does this simplify the estimates of the regression coefficients α and β ?
4. Suppose \mathbf{u} and \mathbf{v} are orthogonal to each other. Are $-\mathbf{u}$ and $2 \mathbf{v}$ orthogonal to each other?
5. Show that if \mathbf{A} is invertible, then its inverse is unique. (Hint: Show that if \mathbf{B} and \mathbf{B}^{*} are both inverses of \mathbf{A}, then $\mathbf{B}=\mathbf{B}^{*}$)
6. Solve for \mathbf{X} in the following equations (you may assume that all matrices are conformable and that all the inverses you need exist):
(a) $\mathbf{A X}+\mathbf{B}=\mathbf{B} \mathbf{X}$
(b) $\mathbf{X A B}-\mathbf{B A}=0$
(c) $\mathbf{A X B}=\mathbf{C}$
7. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 2 & 0 \\
1 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

(a) Find $\mathbf{A}^{T} \mathbf{A}$. You may use a computer, although it wouldn't hurt to try it by hand and confirm that you get the same answer.
(b) Find $\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}$. If you really want to, you can try solving this by hand, but I would recommend using a computer.
(c) Is $\mathbf{A}^{T} \mathbf{A}$ positive definite?
(d) What is the rank of \mathbf{A} ?

