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Introduction

Our final topic for the semester is missing data

Missing data is very common in practice, and can occur for a
variety of reasons: patients skip hospital visits, investigators
run out of time, investigators run out of money, experiments
fail, subjects refuse to answer questions or permit tests, etc.

There is an extensive literature on the topic of missing data
and a wide variety of methods and approaches; although we
cannot hope to do justice to the entire topic in a week, we
can illustrate some of the issues and how they can be
addressed in a Bayesian MCMC framework
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Missing data in the Bayesian paradigm

In Bayesian statistics, there is no fundamental difference
between “data” and “parameters”; both are random, the only
difference is that data are observable whereas parameters are
not

Missing data, then, is simply another unobserved quantity in
the model – it requires a prior and will have a posterior
distribution

The “requires a prior” remark is more complicated than it
sounds, though – depending on the type of missing data, we
may need to give a lot of thought to modeling the missing
data mechanism

Furthermore, we do not typically model the distribution of
covariates; this adds an additional layer of complexity when
covariates are missing
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Missing data models

The complexity of these missing-data models can vary
considerably depending on the mechanism that may have
resulted in missing data

In the simplest case, it may be reasonable to assume yi
iid∼ p(θ)

Somewhat more complicated, it may be the case that the
value of the missing data depends on other values recorded for
that observation: yi ∼ p(θ,xi)
Still more complicated, the probability that an observation is
missing may depend on the missing value itself (e.g., obese
individuals may be less likely to report their weight, minorities
may be less likely to report their ethnicity), or upon
unobserved covariates
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Imputation

The most common approach to handling missing data is
probably to throw out observations with missing values, but
this has two large drawbacks:

Doing so throws away information and reduces efficiency
Doing so may introduce selection bias

Another approach, also common and usually better, for
handling missing data is imputation: filling in missing values
with reasonable guesses as to what the value may have been

Imputation methods range from simple (fill in missing values
with the mean) to complex, model-based approaches, and
may be deterministic or random
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Multiple imputation

A refinement of “single” imputation is multiple imputation, in
which missing observations are repeatedly replaced with
random values (typically from the predictive distribution of a
model), creating several imputed data sets in which the
observed values remain the same but the missing data varies
from data set to data set
In a sense, this is similar to what occurs in a Bayesian model
fit using Gibbs sampling: with each iteration, missing data are
drawn conditional on the current values of θ, then θ is drawn
from its full conditional given the current (“imputed”) values
of the missing data
Multiple imputation, however, requires extra adjustments to
simultaneously account for uncertainty in the parameter
estimates and uncertainty in the values of the missing data
(and does not entirely account for all sources of uncertainty)
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Introduction

We begin with the case of missing responses and illustrate
using the CD4 data

One can consider this data set to contain missing values in
the sense that some subjects do not have recordings for all
visits 1, 4, 7, 10, 13, 16, and 19

We will analyze this data two ways: the first assuming that
the missingness is essentially “ignorable”, and the second
assuming that missing values are more likely to have low CD4
percentages
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New data structure

Thus, instead of:

Visit ID CD4Pct

1 2 1.00
4 2 0.30

we now have

Visit ID CD4Pct

1 2 1.00
4 2 0.30
7 2 NA

10 2 NA

13 2 NA

16 2 NA

19 2 NA
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Results

First, we consider fitting the exact same model as in the
assignment (model 3, specifically)

Not surprisingly, we obtain the exact same posterior; the only
difference is that (if we choose to monitor them), JAGS
returns draws from the posterior predictive distribution of y
for the missing observations

Be careful, however, in monitoring all of y, as it can be a
considerable computational burden to store an enormous array
of y values, especially when the majority of values are
identical from one iteration to the next
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Posterior for γβ

For future reference, here is the posterior for γβ, the slope (in
years)

Median 2.5% 97.5%

γβ1 -0.23 -0.35 -0.11
γβ2 0.04 -0.13 0.21

In other words, the control group had average slope -0.23, while
the treatment group had average slope -0.19
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Informative missingness

Alternatively, it is possible that patients drop out of the study
because they are too sick to continue, or have died

Let Miss indicate whether or not y is missing for a given visit;
consider adding the following logistic regression component to
our model:

Missi|πi ∼ Binom(1, πi)

log

(
πi

1− πi

)
= γm1 + γm2yi

γm1 ∼ N(0, 10000)

γm2 ∼ N(0, 1/10)
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Remarks

Under the new model, the fact that an observation is missing
may potentially inform us as to what its value may have been

Note that we could not possibly fit this model “classically”
without imputing y, as y would be missing (by definition) in
all cases where the outcome equals 1

The model depends on “imputing” values for y, although note
that this is done dynamically here in the sense that the
imputation informs us about the missingness parameters
(γm), which in turn informs us about the missing values of y,
which affects α, β, which affect the next imputation, etc.
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Code

## Visit level

for (i in 1:n) {

y[i] ~ dnorm(a[ID[i]] + b[ID[i]]*x[i], sigma[1]^(-2))

Miss[i] ~ dbern(p[i])

logit(p[i]) <- gm[1] + gm[2]*y[i]

}

gm[1] ~ dnorm(0, 0.0001)

gm[2] ~ dnorm(0, 10)
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Missing-data model

Posterior mean for γm2 is -0.76, with 95% interval (-0.88, -0.61)
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Posterior for γβ

Under the informative missingness model, we have the following
posterior for the population-level slope parameters:

Median 2.5% 97.5%

γβ1 -0.59 -0.77 -0.42
γβ2 -0.06 -0.29 0.18

In other words, the average progression (in both groups) is
considerably more rapid if we assume an informative missingness
than if we ignore it; there’s still no solid evidence that treatment
has any effect on disease progression
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THM study: Introduction

We now turn to the case where we have missing covariate data

To illustrate, we will analyze data from a study of
trihalomethanes (THM) in domestic tap water

THMs are a chemical byproduct of the treatment process used
to disinfect the public water supply

As we mentioned earlier in the course, THMs are thought to
be carcinogenic in humans at high concentrations, but may
also have other deleterious consequences; here we investigate
the relationship between THM levels and the probability that
a child is born with a low birthweight
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Data

The study used data from the UK (United Kingdom, not
University of Kentucky) National Births Register, which
contains data on the birth weight (here categorized as lbw),
where the mother lives (from which the THM levels in her
water supply could be estimated, dichotomized into
> 60µg/L or not) and the sex of the baby (Male)

Socioeconomic status may play a role; as a rough measure of
that, we include Dep, an indicator for whether the mother
lived in a deprived local area
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Missing data

Smoking and ethnicity are known risk factors for low
birthweight, as well as potential confounders with THM levels
due to their spatial patterns

It would certainly be desirable to control for smoking and
ethnicity, but these variables are not recorded in the Births
Register

They are, however, available for a separate group of mothers
who participated in a study known as the national birth cohort
study

The full sample, therefore, consists of 1,000 births from the
cohort study with complete data and 3,000 births from the
registry with missing values for smoking and ethnicity
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Simple model

We begin with a simple model to illustrate the basic idea of
modeling the distribution of covariates

No matter how ignorable the missing data may be, we still
must specify a distribution for the covariates

In this particular case, this is straightforward – both Smk and
Eth are indicator variables (for maternal smoking during
pregnancy and non-white ethnicity, respectively), so a
Bernoulli distribution is a natural choice
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Implementation

This is straightforward to implement:

# Imputation

for (i in 1:n) {

Smk[i] ~ dbern(theta[1])

Eth[i] ~ dbern(theta[2])

}

for (j in 1:2) {

theta[j] ~ dunif(0,1)

}

Note that in doing this, we’re assuming that smoking and
ethnicity are independent of the other explanatory variables
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Comparison with external imputation

Note that we are not, however, assuming that smoking and
ethnicity are independent of the outcome (low birth weight);
the fact that smoking and ethnicity appear in the logistic
regression model allows their imputation to be influenced by
the response

This is in stark contrast to “external” imputation, in which
the imputation model must include the response, otherwise
effect estimates will be biased towards 0
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Results
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Imputation illustration

lbw THM Dep Male Smk Eth SmkImp EthImp

14 1 1 0 0 0.49 0.37
1476 0 0 1 0 0.32 0.19

The sample means (among the complete cases) for Smk and Eth

were 0.355 and 0.228, respectively
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Comparison: Imputation

To illustrate the bias towards zero phenomenon, let’s compare the
results of our Bayesian model with an “external” imputation, in
which we impute Smk and Eth and then fit a logistic regression
model to the imputed data set:

OR estimates
Smoking Ethnicity

Two-step 1.4 1.5
Bayes 2.4 2.8
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Comparison: Complete-case

How does this affect the estimate of the effect of THM?

Let’s compare our odds ratio estimates with that of the
unadjusted logistic regression and the complete-case analysis:

95% Interval
OR Lower Upper

Bayes 1.4 1.2 1.7
Unadjusted 1.4 1.2 1.7
Complete-case 1.1 0.8 1.6
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Ignorable missingness?

The assumption of ignorable missingness is perhaps a bit
questionable in this case

For example, 51% of smokers were exposed to high THM
levels, compared with 40% of nonsmokers

Likewise, 52% of non-white mothers were exposed to high
THM levels, compared with 41% of white mothers

Furthermore, 24% of non-white mothers smoked, compared
with 39% of white mothers

In other words, Smk and Eth do not seem to be independent
of each other or the exposure of interest
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Area variables

Furthermore, the investigators have access to the area of
residence for the mothers, which may contain useful clues
about the smoking status and ethnicity of the mother

The data set online also contains SmkArea, the proportion of
mothers in a given mother’s residenial area who smoke, and
similarly for EthArea

We can use these variables, along with THM and maybe others,
to build an imputation model
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Correlation

If we only had one variable to impute, or if the variables were
independent, we could consider a logistic regression model (or
models)

However, it seems plausible that the two variables are
correlated, which complicates things a bit as we now need a
model for a multivariate discrete outcome

Correlations among normally distributed variables are
relatively straightforward, but things are much more
complicated for other distributions
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Multivariate probit models

For this reason, it is often convenient to work with a latent
variable approach that treats the discrete variable as a coarse
observation of an underlying continuous quantity

Specifically, we consider the following model:

zi ∼ N(µi,Σ)

µi1 = δ11 + δ12THMi · · ·+ δ15SmkAreai + δ16EthAreai

µi2 = δ21 + δ22THMi · · ·+ δ25SmkAreai + δ26EthAreai

Smki =

{
1 zi1 > 0

0 zi1 ≤ 0

Ethi =

{
1 zi2 > 0

0 zi2 ≤ 0
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Implementation

The model can be implemented in JAGS as follows:

for (i in 1:n) {

Z[i,1:2] ~ dmnorm(mu[i,1:2], Omega[1:2,1:2])

mu[i,1] <- d[1,1] + d[2,1]*THM[i] + d[3,1]*Male[i]

+ d[4,1]*Dep[i] + d[5,1]*SmkArea[i] + d[6,1]*EthArea[i]

mu[i,2] <- d[1,2] + d[2,2]*THM[i] + d[3,2]*Male[i]

+ d[4,2]*Dep[i] + d[5,2]*SmkArea[i] + d[6,2]*EthArea[i]

Smk[i] ~ dinterval(Z[i,1],0)

Eth[i] ~ dinterval(Z[i,2],0)

}

with standard uninformative priors on δ and a (1, ρ, ρ, 1) prior on Σ
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Imputation model results

95% interval for ρ: (-0.41, -0.21)
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Imputation examples

For the same two patients as before:

lbw THM SmkArea EthArea SmkImp EthImp

14 1 1 0.06 0.18 0.46 0.47
1476 0 0 0.45 0.00 0.36 0.06
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Results: Birthweight model
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Comparison

95% Interval
OR Lower Upper

Bayes (model) 1.2 1.0 1.4
Bayes (ignorable) 1.4 1.2 1.7
Unadjusted 1.4 1.2 1.7
Complete-case 1.1 0.8 1.6
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Final remarks

THM levels are correlated with smoking and ethnicity; failing
to adjust for this effect leads to an overestimation of the risk
posed by THM

Treating the missing data as ignorable/missing completely at
random also fails to properly adjust for these confounding
variables

The complete-case analysis seems reasonable in this case, but
we have to throw away 75% of our data

The multivariate model for the missing covariates properly
adjusts for confounding, with a substantial reduction in
uncertainty compared to the complete-case analysis

THM seems to pose a borderline significant risk for low birth
weight, although the effect is rather small
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