Summarizing explained variance and partial pooling

Patrick Breheny

April 16

Introduction

- It is often helpful to understand and summarize how much explanatory power a model has
- For normally distributed outcomes, a natural definition of explanatory power is the proportion of variance explained (R^2)
- This concept can be extended to multilevel modeling, although it is worth discussing, as each level of the multilevel model can have its own R^2

Radon model

• Let's go back to our hierarchical model with uranium as a group-level predictor for radon levels:

$$Y_{ij} \sim N(\alpha_j + \beta x_{ij}, \sigma_y^2)$$
$$\alpha_j \sim N(\gamma_0 + \gamma_1 u_j, \sigma_\alpha^2)$$

- Here we have two models predicting two different quantities, each with its own distribution
- Certainly, it may be possible that we can explain a great deal of the variability among the $\{\alpha_j\}$, but little variation among the $\{Y_{ij}\}$, or vice versa

Definition

The classical definition of the proportion of variance explained is

$$R^2 = 1 - \frac{\text{RSS}}{\text{RSS}_0},$$

where RSS and RSS_0 are the residual sums of squares in the model and the null (intercept-only) model, respectively:

$$RSS = \sum_{i} (y_i - \hat{\mu}_i)^2$$
$$RSS_0 = \sum_{i} (y_i - \bar{y})^2$$

• The same basic idea extends directly to multilevel models, although with the slight caveat that the equivalent to "y" is not directly observed

 R^2 and Variance Explained Summarizing the extent of partial pooling

Code

Although possible to calculate directly in R, it is easier to just calculate the RSS for each iteration in JAGS:

```
## House level
for (i in 1:n) \{
 y[i] ~ dnorm(a[cid[i]] + b*x[i], sigma[1]^(-2))
 r1[i] <- y[i] - a[cid[i]] - b*x[i]
}
RSS[1] < - sum(r1^2)
## County level
for (j in 1:J) {
  a[j] ~ dnorm(g[1] + g[2]*u[j], sigma[2]^(-2))
 r2[j] <- a[j] - g[1] - g[2]*u[j]
}
RSS[2] <- sum(r2^2)
```


Then, in R,

```
rss0 <- function(x) crossprod(x-mean(x))</pre>
```

```
## Data level
1-mean(RSS[,1])/rss0(y)
```

```
## Group level
1-mean(RSS[,2])/mean(apply(a, 1, rss0))
```

Alternatively, we could work with variances (as opposed to sums)

 R^2 and Variance Explained Summarizing the extent of partial pooling

Results: House level

Model	R^2
Identical	0.07
Independent	0.29
Independent (adj)	0.21
Multilevel	0.21

Note that the adjusted R^2 for the independent parameters model and the R^2 for the multilevel model are not required to be identical, although conceptually, they are making a similar sort of adjustment

Results: County level

- At the county level, our model explains 74% of the variability among county intercepts
- Uranium is far more successful at explaining variability among county intercepts than county-specific intercepts and floor are at explaining variability among individual houses
- This seems correct compare slide 15, 3-19 notes with slide 7, 3-21 notes

 R^2 and Variance Explained Summarizing the extent of partial pooling

Results: Varying-intercept, varying-slope model

For the varying-intercept, varying-slope model, we have three models and three values for R^2 :

Level	R^2
House	0.23
County (intercept)	0.82
County (slope)	0.18

Introduction

- We have remarked several times that multilevel models are a way of striking a balance between an "identical parameters" model and an "independent parameters" model
- Often, it is helpful to quantify where, exactly, that balance is being struck; *i.e.*, to quantify the degree of pooling

Shrinkage factor

- Suppose $Y_i \sim N(\alpha_{j[i]}, \sigma_y^2)$, $\alpha_j \sim N(\mu_\alpha, \sigma_\alpha^2)$, and let n_j denote the number of observations in group j
- Recall from our original lecture on the normal distribution that the posterior mean for α_j is

$$\bar{\alpha}_j = \frac{\omega_\alpha \mu_\alpha + n\tau_y \bar{y}_j}{\omega_\alpha + n\tau_y} = \lambda_j \mu_\alpha + (1 - \lambda_j) \bar{y}_j$$
$$\lambda_j = \frac{1/\sigma_\alpha^2}{1/\sigma_\alpha^2 + n/\sigma_y^2}$$

 The quantity λ_j, then, may be thought of as a "shrinkage factor" that equals 1 if a parameter is shrunk all the way to the "identical parameters" value and 0 if it equals the "independent parameters" estimate

Connections

Note that

$$\frac{1/\sigma_{\alpha}^2}{1/\sigma_{\alpha}^2 + n/\sigma_y^2} = 1 - \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_y^2/n_j},$$

which bears a striking resemblance to our formula for R^2

 This makes intuitive sense, as the more accurately our model fits the {α_j}'s, the more heavily we would want to shrink outliers towards what the model predicts $$R^2$$ and Variance Explained Summarizing the extent of partial pooling

Connections (cont'd)

Also note that

$$\lambda_j = \frac{\operatorname{Var}(\alpha_j | \mathbf{y})}{\sigma_\alpha^2}$$

- In words, the shrinkage factor is equal to posterior variance divided by the group-level variability
- This is a convenient form to work with from a computational perspective:

lam <- apply(a, 2, var)/mean(sigma[,2]^2)</pre>

 R^2 and Variance Explained Summarizing the extent of partial pooling

Shrinkage factors for two radon models

Overall shrinkage

- Finally, it is useful to summarize the individual-parameter shrinkage factors into a summary measure describing the overall extent of shrinkage at a given level of a model
- Let $\epsilon_j = \alpha_j \hat{\alpha}_j$ denote the residual for the *j*th value of α ; for a simple model, $\hat{\alpha}$ is simply μ_{α} , but group-level predictors could be involved
- Gelman and Pardoe (2006) define the following summary measure for the shrinkage factor:

$$\lambda = 1 - \frac{\operatorname{Var}(\bar{\epsilon}_j)}{\operatorname{Var}(\epsilon_j)}$$

Overall shrinkage: results

- For the basic model, $\lambda=0.54;$ for the model that includes uranium as a group-level predictor, $\lambda=0.78$
- Certainly, both would seem to be reasonable summaries of the figures of slide 14
- It is worth noting that, like R^2 itself, these quantities are reasonably well-defined for linear models following normal distributions; extending these measures to generalized linear models, on the other hand, is not as straightforward