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Introduction

It is often helpful to understand and summarize how much
explanatory power a model has

For normally distributed outcomes, a natural definition of
explanatory power is the proportion of variance explained (R2)

This concept can be extended to multilevel modeling,
although it is worth discussing, as each level of the multilevel
model can have its own R2
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Radon model

Let’s go back to our hierarchical model with uranium as a
group-level predictor for radon levels:

Yij ∼ N(αj + βxij , σ
2
y)

αj ∼ N(γ0 + γ1uj , σ
2
α)

Here we have two models predicting two different quantities,
each with its own distribution

Certainly, it may be possible that we can explain a great deal
of the variability among the {αj}, but little variation among
the {Yij}, or vice versa
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Definition

The classical definition of the proportion of variance explained
is

R2 = 1− RSS

RSS0
,

where RSS and RSS0 are the residual sums of squares in the
model and the null (intercept-only) model, respectively:

RSS =
∑
i

(yi − µ̂i)2

RSS0 =
∑
i

(yi − ȳ)2

The same basic idea extends directly to multilevel models,
although with the slight caveat that the equivalent to “y” is
not directly observed
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Code

Although possible to calculate directly in R, it is easier to just
calculate the RSS for each iteration in JAGS:

## House level

for (i in 1:n) {

y[i] ~ dnorm(a[cid[i]] + b*x[i], sigma[1]^(-2))

r1[i] <- y[i] - a[cid[i]] - b*x[i]

}

RSS[1] <- sum(r1^2)

## County level

for (j in 1:J) {

a[j] ~ dnorm(g[1] + g[2]*u[j], sigma[2]^(-2))

r2[j] <- a[j] - g[1] - g[2]*u[j]

}

RSS[2] <- sum(r2^2)
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Code

Then, in R,

rss0 <- function(x) crossprod(x-mean(x))

## Data level

1-mean(RSS[,1])/rss0(y)

## Group level

1-mean(RSS[,2])/mean(apply(a, 1, rss0))

Alternatively, we could work with variances (as opposed to sums)
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Results: House level

Model R2

Identical 0.07
Independent 0.29
Independent (adj) 0.21
Multilevel 0.21

Note that the adjusted R2 for the independent parameters model
and the R2 for the multilevel model are not required to be
identical, although conceptually, they are making a similar sort of
adjustment
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Results: County level

At the county level, our model explains 74% of the variability
among county intercepts

Uranium is far more successful at explaining variability among
county intercepts than county-specific intercepts and floor are
at explaining variability among individual houses

This seems correct – compare slide 15, 3-19 notes with slide
7, 3-21 notes
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Results: Varying-intercept, varying-slope model

For the varying-intercept, varying-slope model, we have three
models and three values for R2:

Level R2

House 0.23
County (intercept) 0.82
County (slope) 0.18
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Introduction

We have remarked several times that multilevel models are a
way of striking a balance between an “identical parameters”
model and an “independent parameters” model

Often, it is helpful to quantify where, exactly, that balance is
being struck; i.e., to quantify the degree of pooling
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Shrinkage factor

Suppose Yi ∼ N(αj[i], σ
2
y), αj ∼ N(µα, σ

2
α), and let nj

denote the number of observations in group j

Recall from our original lecture on the normal distribution
that the posterior mean for αj is

ᾱj =
ωαµα + nτyȳj
ωα + nτy

= λjµα + (1− λj)ȳj

λj =
1/σ2α

1/σ2α + n/σ2y

The quantity λj , then, may be thought of as a “shrinkage
factor” that equals 1 if a parameter is shrunk all the way to
the “identical parameters” value and 0 if it equals the
“independent parameters” estimate
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Connections

Note that

1/σ2α
1/σ2α + n/σ2y

= 1− σ2α
σ2α + σ2y/nj

,

which bears a striking resemblance to our formula for R2

This makes intuitive sense, as the more accurately our model
fits the {αj}’s, the more heavily we would want to shrink
outliers towards what the model predicts
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Connections (cont’d)

Also note that

λj =
Var(αj |y)

σ2α

In words, the shrinkage factor is equal to posterior variance
divided by the group-level variability

This is a convenient form to work with from a computational
perspective:

lam <- apply(a, 2, var)/mean(sigma[,2]^2)
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Shrinkage factors for two radon models
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With uranium as group−level predictor
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Overall shrinkage

Finally, it is useful to summarize the individual-parameter
shrinkage factors into a summary measure describing the
overall extent of shrinkage at a given level of a model

Let εj = αj − α̂j denote the residual for the jth value of α;
for a simple model, α̂ is simply µα, but group-level predictors
could be involved

Gelman and Pardoe (2006) define the following summary
measure for the shrinkage factor:

λ = 1− Var(ε̄j)

Var(εj)
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Overall shrinkage: results

For the basic model, λ = 0.54; for the model that includes
uranium as a group-level predictor, λ = 0.78

Certainly, both would seem to be reasonable summaries of the
figures of slide 14

It is worth noting that, like R2 itself, these quantities are
reasonably well-defined for linear models following normal
distributions; extending these measures to generalized linear
models, on the other hand, is not as straightforward
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