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Introduction

@ As we have seen, there are two chief concerns with the use of
MCMC methods for posterior inference:

e Has our chain converged in distribution to the posterior?
e How much information about the posterior does our chain
contain?

@ Today's lecture is about methods — both informal
(graphical/visual checks) and formal — for assessing each of
the above concerns

@ The R20penBUGS and R2jags packages provide some of these
tools, but we will also be using the package coda, which
provides many additional diagnostics for assessing convergence
and accuracy

@ We will illustrate these methods on basic linear regression
model for a classic data set on Swiss Fertility (full details in
supplementary code)
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Multiple chains

@ Most approaches for detecting convergence, both formal and
informal, rest on the idea of starting multiple Markov chains
and observing whether they come together and start to behave
similarly (if they do, we can pool the results from each chain)

e In bugs/jags, the number of chains is set by the n.chains
argument (the default is 3 chains)

@ The results are contained in a T' x M x p array called
sims.array, where T is the number of draws/iterations, M
is the number of chains, and p is the number of parameters
we are monitoring, although most diagnostic functions operate
at a higher level and do not require interacting with the array
itself
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Trace plots, as in the last lecture, can be obtained via
traceplot (fit)
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Initial values

@ The previous plot indicates that the three chains converge to
the posterior after around 1" = 300 iterations; certainly,
however, the number of iterations required to reach
convergence depends on the initial values

e It is typically recommended (e.g., Gelman and Rubin, 1992) to
use overdispersed initial values, meaning “more variable than
the target distribution” i.e., the posterior

e In bugs/jags, initial values may be specified in one of two
ways:

e As a list of M lists, each specifying the initial values for each
parameter for that chain
o As a function generating a list of (random) initial values
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Quantifying convergence

o Although looking at trace plots is certainly useful, it is also
desirable to obtain an objective, quantifiable measure of
convergence

@ Numerous methods exist, although we will focus on the
measure originally proposed in Gelman and Rubin (1992),
which is the method used in R20penBUGS and R2jags

@ The basic idea is to quantify the between-chain and the
within-chain variability of a quantity of interest — if the chains
have converged, these measures will be similar; otherwise, the
between-chain variability will be larger
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@ The basic idea of the estimator is as follows (the actual
estimator makes a number of modifications to account for
degrees of freedom):

e Let B denote the standard deviation of the pooled sample of
all MT iterations (the between-chain variability)

o Let W denote the average of the within-chain standard
deviations

e Quantify convergence with

Syl

o
w

o If > 1, this is clear evidence that the chains have not

converged
@ AsT — 00, R—1, R<1.05is widely accepted as implying
convergence for practical purposes
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Obtaining R in R

o R is displayed for bugs and jags objects using both the
print and plot methods, which we will discuss later
@ More details (along with other convergence measures) are
given in the coda package, whose gelman.diag function
provides, in addition to R itself,
o An upper confidence interval for R

o A multivariate extension of R for quantifying convergence of
the entire posterior
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gelman.diag output

Multivariate R: 1.04

R Upper CI

£ 1.18 1.25
Bo  1.02 1.06
B3 1.11 1.27
By 1.06 1.07
Bs 1.04 1.05
B 1.03 1.10
7 1.00 1.01

Patrick Breheny

BST 701: Bayesian Modeling in Biostatistics



Convergence
Efficiency and accuracy
Summary

Updating a chain

@ It is worth pointing out that if a chain has not converged, one
does not have to start over again from the initial values, but
may simply resume the chain from where we left off

@ In BUGS, unfortunately, this feature is only available through
the OpenBUGS GUI (i.e., cannot be accessed from within R,
at least as far as | know)

@ In JAGS, however, “updating” a chain in R is straightforward:

fit <- update(fit, 1000)

replaces £it with 1000 new draws (per chain), treating the
values in the original £it as burn-in

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics



Convergence
Efficiency and accuracy
Summary

Multiple chains: Pros and Cons

@ The obvious downside to running multiple chains is that it is
inefficient: we intentionally force our sampler to spend extra
time in a non-converged state, which in turn requires much
more burn-in

@ The obvious upside, however, is that it provides us with some
measure of confidence that we are actually drawing samples
from the posterior

@ It should be stressed, however, that (without additional
assumptions about the posterior) no method can truly prove
convergence; diagnostics can only detect failure to converge
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How many iterations?

@ We may use R, then, as a guide to how long we must run our
chains until convergence

@ The obvious next question is: how long must we run our
chains to obtain reasonably accurate estimates of the
posterior?

@ This issue is complicated by the fact that we cannot obtain
independent draws from the posterior distribution and must
settle instead for correlated samples
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Accuracy of the Monte Carlo approach

o If we could obtain iid draws from the posterior, estimating the
Monte Carlo standard error (at least, of the posterior mean) is
straightforward: letting o, denote the posterior standard
deviation, the MCSE is ,,/v'T

@ A reasonable rule of thumb, then, would be to use T" = 400;
this is the point at which the Monte Carlo error is less than
5% of the overall uncertainty about the mean

@ Another rule of thumb, studied in Raftery and Lewis (1992),
is that T' = 4,000 iterations are required for reasonable
accuracy concerning the 2.5th (and 97.5th) percentiles
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Efficiency

@ In the presence of autocorrelation, however, we may obtain
T = 4,000 samples from the posterior, but those samples
contain less (possibly much less) information about the 2.5th
and 97.5th percentiles than 4,000 independent draws would

@ The lower the autocorrelation, the greater the amount of
information contained in a given number of draws from the
posterior; this is referred to as the efficiency or mixing of the
chain
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Autocorrelation

@ The autocorrelation between two states s and ¢ of a Markov
chain is defined, simply, as the correlation between X () and
x @

@ If the chain is stationary, in the sense that its mean and
variance are not changing with time, then the correlation
between X® and X %) does not depend on ¢; this is known
as the lag-k autocorrelation

@ To calculate and plot the autocorrelation function, one may
use the acfplot function in coda, or the acf function on
elements of sims.array directly
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Thinning

@ A somewhat crude, yet reasonably effective, method dealing
with autocorrelation is to only keep every k draws from the
posterior and discard the rest; this is known as thinning the
chain

o Both R20penBUGS and R2jags allow you to control thinning

through the n.thin option, although it is important to note a
difference between the two with regard to their defaults:
o By default, R20penBUGS sets n.thin=1; i.e., no thinning
o By default, R2jags sets n.thin so that the chain is thinned
down to 1,000 samples per chain from the posterior
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Thinning: Pros and Cons

@ The advantages of thinning are (a) simplicity and (b) a
reduction in memory usage — saving and working with large
chains can be burdensome, especially when p and T are large

@ The disadvantage is that we are clearly throwing away
information; thinning can never be as efficient as using all the
iterations

o If we decide not to thin, we must estimate the MCSE for
dependent samples; this is not trivial
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Markov chain CLTs

@ Although the proof of such theorems is beyond the scope of
this course, there exist central limit theorems for dependent
samples that can be applied to Markov chains

@ In particular, suppose we are interested the posterior mean of
a quantity w; it is still true that our MCMC estimate, @, tends
in distribution to N(E(wly), p/T") for some positive constant p

o Note, however, that p is not the posterior variance, as it

would be if we had iid samples; in the presence of
autocorrelation, p > oz

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics



Co
Efficiency and

Batch means

@ How can we estimate the MCSE, \/p/T?
@ One simple method is to use non-overlapping batch means

@ Suppose we divide up our sample into ) batches, each with a
iterations, and let &, denote the mean in batch ¢

o If a is sufficiently large that the batch means are
approximately uncorrelated, Var(w,) ~ p/a

@ Thus, a reasonable estimator is

—

p = aVar(w),

where @(@) is the sample variance of the {w,}
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Effective sample size

o We may define, then, an effective sample size of the Markov
chain as follows:
52
T =T
p
@ One may then apply the iid rules of thumb analogously, using
T™* in place of T 400 (effective) iterations is enough for a
reasonable estimate of the posterior mean, and 4,000
iterations is required for a reasonable 95% posterior interval
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Time series methods

@ More sophisticated methods for estimating MCSE have been
proposed based on applying ideas from the time series
literature to MCMC chains

@ This is the approach used by coda, which fits an
autoregressive (AR) model to the data and then estimates its
spectral density; the results are available via the functions
summary (which provides the MCSE estimate) and
effectiveSize (which estimates 7™)

e BUGS itself (if you run it through its stand-alone GUI)
estimates MCSE and T™ using batch means

@ R20penBUGS and R2jags use yet another, even cruder
method based on within- and between- chain variances
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Effective sample size measures

For the swiss fertility data, with 10,000 iterations and a burn-in of
5,000 and no thinning, we have the following effective sample size

estimates

Time series Batch means Between/Within

B 91 214 35

B2 475 416 63

B3 440 457 190

B4 1112 788 980

Bs 1059 1030 15000

Be 167 246 60

T 7419 4905 810
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Summary

@ In summary, then, and at the risk of oversimplifying things,
any responsible Bayesian analysis involving MCMC should
check to ensure that, for all quantities of interest,

o R<1.05
o T* > 4,000
@ Obviously, neither of these diagnostics provide proof that your
MCMC approach has adequately estimated the posterior, and
further plots and diagnostics are useful, but in practice, these
two checks do tend to detect a lot of errors

@ Fortunately, these quantities are easily accessible in
bugs/jags with the print and plot methods
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print(fit)

> fit
Current: 3 chains, each with 10000 iterations
(first 5000 discarded)
Cumulative: n.sims = 15000 iterations saved
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

betal1] 62.5 10.3 42.1 55.4 62.8 69.6 82.3 1.1 35
betal2] -0.2 0.1 -0.3 -0.2 -0.2 -0.1 0.0 1.0 63
beta[3] -0.2 0.3 -0.7 -0.4 -0.2 -0.1 0.3 1.0 190
betal4] -0.9 0.2 -1.2 -1.0 -0.9 -0.7 -0.5 1.0 980
betal[5] 0.1 0.0 0.0 0.1 0.1 0.1 0.2 1.0 15000
betal6] 1.2 0.4 0.5 1.0 1.2 1.5 2.0 1.0 60
tau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 810

(Obviously, we need to increase 71" here)
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plot(fit)
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