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Introduction

When more than two coefficients vary, it becomes difficult to
directly model each element of the correlation matrix

For the sake of easily generalizing to larger number of
coefficients, let’s rewrite model #3 from the previous lecture
using matrix notation:

Yij ∼ N(xT
ijβj , σ

2
y)

βj ∼ N(µ,Σ)

The complication, of course, is that now we have to specify a
prior for Σ, a variance-covariance matrix
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Multivariate χ2 distribution

Recall that the semi-conjugate prior for the variance of a
univariate normal distribution could be expressed as a scaled
χ2 distribution:

cτ ∼ χ2(ν)

σ2 = τ−1

The same approach can be extended to the multivariate
normal case using a multivariate extension of the χ2

distribution known as the Wishart distribution
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The Wishart distribution

Suppose x ∼ Np(0,Σ); the Wishart distribution with n
degrees of freedom is defined as the distribution of

n∑
i=1

xix
T
i ;

we will denote this S ∼Wishart(Σ, n)

Alternatively, one could parameterize the Wishart distribution
in terms of the precision matrix, Ω = Σ−1; this is the
parameterization used by BUGS and JAGS (note the
distinction, though, because most other sources, including our
textbook, calls this an “inverse Wishart” distribution)
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Interpreting the Wishart

The big advantage of the Wishart distribution is that it is
guaranteed to produce positive definite draws, provided that
n ≥ p; this is difficult to enforce otherwise

The fewer the degrees of freedom n in the distribution, the
larger the variability; thus, n = p is the least informative
choice possible

Note that the expected value of the Wishart distribution is
nΣ; this is helpful if providing an informative prior, where you
can think of the prior as equivalent to seeing n observations,
for which the observed variance-covariance matrix is nΣ
(again, these would have to be converted to precision matrices
in the BUGS/JAGS formulation)

(See R code for some examples of drawing from the Wishart
distribution)
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Results

This model is similar to Model #3 from the previous lecture,
but is not identical – a Wishart prior is not the same as placing
uniform priors on the elements of Σ directly – however, for
the most part the inferences we obtain are very similar

The most noticeable difference is that the MCMC sampler
runs quite a bit faster and mixes better – this are the usual
advantages of semi-conjugacy

However, another important difference concerns ρ, which has
a posterior median of -0.1 and a 95% posterior interval of
(-0.5, 0.3), which is quite a bit different than the result from
the previous model
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Decomposing the prior

The Wishart distribution has a single parameter that
determines how informative/restrictive it is

Often in modeling, one would rather have a prior that is,
relatively speaking, more informative/restrictive with respect
to the correlation structure than it is with respect to the
variances – i.e., we would like to decompose the prior on Σ
into separate priors on (a) the diagonal elements and (b) the
correlation structure

An interesting approach for doing this is proposed by our
authors, which they call a scaled Wishart or scaled
inverse-Wishart
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Scaled Wishart

The idea is as follows:

Q ∼Wishart(I, n)

Σ = ΞQΞ,

where Ξ is a diagonal matrix with elements {ξj}, which are
typically given a disperse prior such as a uniform distribution
over a wide range

Strictly speaking, this model is not identifiable, in the sense
that the parameters {ξj} and Q cannot be interpreted
separately
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Scaled Wishart (cont’d)

However, the model is still identifiable in terms of Σ, which is
what we care about:

σj = ξj
√
Qjj

ρjk =
Qjk√

Qjj
√
Qkk
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Results

Again, for this data set, most of the inferences regarding
{αj}, {βj}, and the γ parameters are fairly robust to whether
we directly specify the prior for all the elements of Σ, use a
Wishart prior, or a scaled Wishart prior

However, the posterior we obtain for ρ, the correlation
between α and β, is more similar to our original result using
the scaled Wishart than the Wishart: median 0.2, 95%
interval: (-0.5, 0.7)

This is an important observation to be aware of as we more
forward: the “least informative” Wishart prior is still fairly
informative
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