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Varying intercepts and slopes

Today we take up models in which not only the intercepts,
but also the regression coefficients themselves (the slopes) can
vary by group

To put this in terms of our radon example, our previous
models assumed that the difference between basements and
first-floor radon readings was the same in each county

We now consider relaxing that assumption, and allowing some
counties to perhaps have a greater difference between
basements and first floors than others
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Radon data

Of course, not all counties even have first-floor measurements

In the data set, 25 counties have no first-floor radon
measurements (all counties have at least one basement radon
measurement)

Clearly, we cannot learn anything about the difference
between first floor and basement radon levels without at least
one measurement

Note, however, that this does not necessarily prevent us from
saying anything about those counties, as the hierarchical
model allows us to borrow information across counties using
the common prior
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Model #1

Consider the following model:

Yij ∼ N(αj + βjxij , σ
2
y)

αj ∼ N(µα, σ
2
α)

βj ∼ N(µβ, σ
2
β),

with µα, µβ, σα, σβ, and σy given uninformative/reference priors
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Regression lines: 3 counties
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Posterior intervals for β
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Rules of thumb

Gelman & Hill: “Rules of thumb are sometimes given that
multilevel models can only be used if the number of groups is
higher than some number, or if there is some minimum
number of observations per group. Such advice is misguided.”

As the previous model indicates, even when there are
effectively zero observations (more precisely, zero
information), the multilevel model produces reasonable results

Of course, for this model, we don’t really seem to have gained
much by allowing county-level variation in slopes

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 7/18



No correlation
Modeling the correlation

Basic model
With group-level predictors

Model #2

Recall, however, that we had a rather useful county-level
predictor for radon levels: soil uranium measurements

An improvement on Model #1 would be to model the
county-level intercepts and slopes using soil uranium:

Yij ∼ N(αj + βjxij , σ
2
y)

αj ∼ N(γα1 + γα2uj , σ
2
α)

βj ∼ N(γβ1 + γβ2uj , σ
2
β),
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County-level model: α
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County-level model: β
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Posteriors for γ

For this model, the 95% posterior interval for γβ2 is (-0.85,
0.07)

This is moderately convincing evidence that the difference
between basement and first-floor radon measurements is
larger in counties with higher soil uranium concentrations

On the other hand, the 95% posterior interval for γα2 is (0.61,
0.99); we can be certain that average basement radon levels
are higher in counties with higher soil uranium concentrations
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Residuals

Let’s examine what we might call the “residuals” of the
county-level model:

rαj = ᾱj − γ̄α1 − γ̄α2uj

rβj = β̄j − γ̄β1 − γ̄β2uj ,

i.e., the difference between the (posterior means for the )
county-level intercept/slopes and the levels we would predict based
on that county’s uranium concentrations
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●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

−
0.

4
−

0.
2

0.
0

0.
2

 α residuals

 β
 r

es
id

ua
ls

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 13/18



No correlation
Modeling the correlation

Hierarchical correlations

The correlation between the residuals is 0.4

This is a common occurrence in hierarchical modeling –
group-level parameters are typically correlated

Our previous models, which assumed independence between
αj and βj , were instructive building blocks, but in practice, it
is usually appropriate to allow correlation
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Let’s consider now model #3, where we allow county-level
correlation between intercept and slope:

Yij ∼ N(αj + βjxij , σ
2
y)(

αj
βj

)
∼ N

((
γα1 + γα2uj
γβ1 + γβ2uj

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
ρ ∼ Unif(−1, 1),

where the γ and σ parameters have the usual uninformative priors
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Posteriors for γ, ρ

In this example, allowing for correlation between α and β does
not dramatically affect the results

In particular, the posterior median for γβ2 is now -0.41, with a
95% interval of (-0.87, 0.05), very similar to our earlier results

In part, this arises from the fact that there is limited
information about β in many counties, and consequently,
limited information about ρ

The posterior median of ρ is 0.28, with a 95% interval of
(-0.62, 0.96)
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Posterior draws of the regression line
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