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Motivation

Suppose that a certain operation is performed in four
hospitals: A, B, C, and D

Further suppose that the observed mortality rates in A, B, and
C are 10%, 19%, and 14%; what would you predict about
hospital D?

It seems unlikely that all hospitals, given that they employ
different surgeons, serve different populations of patients, and
may have different protocols, have the exact same underlying
mortality rate

However, it also seems natural to think that the hospitals have
some similarity to each other and that the mortality rates in
A, B, and C tell us something about the mortality rate in D
(which is probably somewhere between 10% and 20%)
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Identical vs. independent vs. Hierarchical

To make this more concrete, let θi denote the mortality rate
in hospital i (or more abstractly, some parameter of interest
for unit i)

We refer to the assumption that θ1 = θ2 = · · · = θ as the
“identical parameters” model

We refer to the other extreme, that {θi} are completely
unrelated to each other, as the “independent parameters”
model

Bayesian modeling allows a natural compromise between the
two extremes: we can assume that the θi arise from a
common distribution, say, θi ∼ N(µ, σ2)

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 3/22



Introduction
Example: Varying intercepts

Prediction/forecasting

Hyperparameters and hyperpriors

The sort of model is different from what we have seen before
in the sense that, while there is still observed data {yi} that
depend on unobservable parameters {θi}, the unobservable
parameters themselves depend on yet more unobservable
parameters (let’s call those parameters φ)

Parameters like φ, which control the distribution of other
parameters (as opposed to controlling the distribution of
observable quantities), are known as hyperparameters

Like all unknown quantities in Bayesian statistics, φ must be
given a prior; the prior of a hyperparameter is known as a
hyperprior
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Hierarchical/multilevel models

Thus, our Bayesian model involves the parameters {θi} arising
independently from a common distribution, conditional on the
values of the hyperparameters

Our full prior, then, takes the following form:

p(θ, φ) = p(φ)
∏
i

p(θi|φi)

Note that our prior is specified in multiple levels, or layers;
consequently, this type of model is known as a hierarchical
model or a multilevel model
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Remarks

It is worth noting that similar sorts of models can be proposed
in frequentist statistics, and are referred to as random effects
models or mixed effects models

Hierarchical/multilevel/mixed effects models are most often
employed in cases where our data consists of observations
that are not independent (if we do not condition on {θi}, the
observations within a hospital are correlated), but they have
other uses as well

For example, when we discussed skeptical (ridge regression)
priors for regression models, we arbitrarily specified the value
ω; a more natural approach is to specify a distribution for ω
and let the data guide our skepticism about the collection
{βj}
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Radon data

To introduce the concepts involved in hierarchical modeling,
let’s look at data from the State Residential Radon Survey, a
study coordinated by the Environmental Protection Agency

Radon is a naturally occurring radioactive gas that, in high
concentrations, is known to cause lung cancer

Radon concentrations vary considerably from house to house;
the purpose of the study was to identify risk factors for houses
whose residents might be suffering from dangerously high
exposures
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Radon data (cont’d)

Because radon exposure is highly right-skewed, we will take a
log transformation, which roughly normalizes the distribution
(denote this Y )

For the sake of simplicity, we will consider only the data from
Minnesota (several states were involved in the full study) and
two of the potential risk factors:

floor: Whether the measurement was taken in the house’s
basement (0) or first floor (1); denote this x
county
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Models

To illustrate the ways in which hierarchical models differ from
other models, we will consider three possible analyses of this
data

“Identical”: A simple linear regression model for floor
treating all counties as identical (our textbook calls this the
“pooled” model)

“Independent”: A linear regression model for floor in which
each county has an independently estimated intercept (our
textbook calls this the “unpooled” model)
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Hierarchical model

Our third model is hierarchical; letting i index houses and j
index counties,

Yij ∼ N(αj + βxij , σ
2
y)

αj ∼ N(µ, σ2α),

with µ, β, σ1, and σ2 given standard uninformative/reference
priors

Note that µ here (a hyperparameter) represents the overall,
“population” average intercept, while {αj} are the
county-specific intercepts

Further note that σ2y is the “within-county” variability
between houses, while σ2α is the “between-county” variability
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Inference for µ

●

●
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Inference for β

●

●
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Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 12/22



Introduction
Example: Varying intercepts

Prediction/forecasting

Inference for αj
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Features of hierarchical models

This last plot illustrates three essential features of hierarchical
models:

Shrinkage: County-specific means are pulled toward the
population mean

Smoothing of uncertainty: Uncertainty about the
county-specific means is lower (sometimes much lower) than if
these parameters were estimated independently

Proportional borrowing of information: Shrinkage and
uncertainty reduction do not occur uniformly –
information-poor counties must borrow a great deal of
information from the other counties, while information-rich
counties do not
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Regression line estimates
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Inference: All {αj}
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Inference: Variance components

Finally, it is worth noting that the within-county variability is
quite a bit larger than the between-county variability
(σ̄y = 0.76, σ̄α = 0.33)

Alternatively, we may express this as a ratio, where
σ2α/σ

2
y = 0.19, with a 95% PI of (0.11, 0.32)

Another common summary measure is the intraclass
correlation:

ICC =
σ2α

σ2α + σ2y
;

if members of a group are unrelated, ICC → 0 (the grouping
contains no information); if members of a group are identical,
ICC → 1 (the grouping contains all the information)

Here, the ICC is estimated to be 0.16, with a 95% PI of (0.10,
0.24)
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Other quantities of interest

As with any Bayesian model, it is straightforward to carry out
inference for other quantities of interest using Monte Carlo
approaches

For example, if for some reason we were interested in the
probability that radon levels were higher in Carlton county
than St. Louis county,

> mean(a[,9] > a[,73])

[1] 0.9069333

We could obtain the same result (91% posterior probability)
by creating a variable pi <- a[,9] > a[,73] in
BUGS/JAGS; its posterior would then be reported by
print(fit)
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Other quantities of interest (cont’d)

The two are mathematically equivalent, but have some advantages
and disadvantages in practice:

Calculating these quantities in R allows interactive exploration
and is typically easier to debug

Calculating these quantities in R does not require storing the
entire chain for derived quantities

Calculating these quantities in BUGS/JAGS allows MCMC
diagnostics to be run more easily
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Prediction/forecasting

It is worth paying some attention, however, to the issue of
prediction or forecasting

In principle, this is no different than obtaining the posterior
for any other quantity; there are, however, two important
differences:

Observed quantities are related to parameters stochastically,
and therefore are slightly more complicated to draw than other
quantities of interest
Prediction involves an observed quantity and may, therefore,
be subjected to an empirical test of accuracy

We consider two predictions/forecasts:

A radon measurement for a house in an existing county
A radon measurement for a house in an new county
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Prediction: A house in Carlton county

Generating posterior predictions involves an additional layer of
simulation:

nn <- nrow(a)

yy <- rnorm(nn, a[,9], sigma[,1]) ## Carlton county

quantile(yy, c(.025, .5, .975))

2.5% 50% 97.5%

-0.3393993 1.1640940 2.7190514

Note that we are generating nn (here, 15,000) MC draws for
this hypothetical new house in Carlton county based on
15,000 draws of α9 and 15,000 draws of σy, the two
parameters Y depends on

Alternatively, we could have created an extra row in our data
set with county and floor specified, but y set to NA, in
which case BUGS/JAGS will do the simulation for you
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Prediction: A house in a new county

This particular data set happens to contain measurements for
all the counties in Minnesota, but suppose there was an 86th
county for which we had no data

We can still generate predictions for such a house; it simply
involves one more step:

> aa <- rnorm(nn, mu, sigma[,2])

> yy <- rnorm(nn, aa, sigma[,1])

> quantile(yy, c(.025, .5, .975))

2.5% 50% 97.5%

-0.172425 1.465341 3.076426

For all these predictions, an important thing to keep in mind
is the propagation of uncertainty that Bayesian MCMC
methods allow
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