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Introduction

Our topic for today is linear regression

Many of the results will be similar to what we have seen for
the iid normal case – albeit with the multivariate normal
distribution replacing the normal – although we will encounter
a few interesting differences

Like the iid normal case, linear regression for a normally
distributed outcome does not have a fully conjugate prior, but
is semi-conjugate with a multivariate normal prior on β and a
gamma/scaled χ2 prior on τ
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Posterior for β|y, τ

Suppose

y|β ∼ N(Xβ, τ−1I)

β ∼ N(µ0,Ω
−1
0 )

Then, conditioning on τ , we have

β|y ∼ N(µn,Ω
−1
n ),

where

Ωn = Ω0 + τX′X

µn = Ω−1n (Ω0µ0 + τX′y)

= Ω−1n (Ω0µ0 + τX′Xβ̂OLS)
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Connection w/ ridge regression

A common skeptical prior is µ0 = 0, Ω0 = ω0I; i.e., the
elements of β follow independent normal distributions
centered at zero

In this case,

µn = (X′X + λI)−1X′y,

where λ = ω0/τ ; this is the ridge regression estimator

Note that a “skeptical” prior on the intercept wouldn’t really
make any sense; instead, one would presumably use an
uninformative prior on β0 and have the rest follow N(0, ω−1)
distributions, as is common practice in ridge regression

Note also that β is not scale-invariant, and assuming a
common ω0 for all βj may not be appropriate
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Updating τ/σ2

The preceding remarks have focused on β, holding τ fixed

For updating τ , we have the exact same result as for linear
regression:

y|τ ∼ N(Xβ, τ−1)

τ ∼ Scaled-χ2(n0,RSS0)

implies

τ |y ∼ Scaled-χ2(n0 + n,RSS0 +RSS),

where again, in a Gibbs sampler, RSS is calculated conditional
on fixing β at its most recent value
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Alcohol metabolism data

Let’s apply these methods to a study involving 18 women and
14 men of why women exhibit a lower tolerance for alcohol
and develop alcohol-related liver disease more readily than
men

The data set contains the following variables:

Metabol: First-pass metabolism of alcohol in the stomach
(mmol/liter-hour); this is the outcome variable
Gastric: Gastric alcohol dehydrogenase activity in the
stomach (µmol/min/g of tissue)
Sex: Sex of the subject
Alcohol: Whether the subject is alcoholic or not
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Model

There are interesting questions of interactions in this data set,
particularly between sex and dehydrogenase activity, but we
will focus only on the main effects here

We will fit the following model:

Metabol = β0 + β1Gastric+ β2Sex+ β3Alcohol

We will explore the use of both uninformative/reference priors
for β and the use of the skeptical (ridge) prior discussed
earlier, with βj ∼ N(0,Var(xj)

−1) for j 6= 0

The standard deviation, σ, will have an uninformative prior in
both models
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Results: Reference prior

mean sd 2.5% 25% 50% 75% 97.5%

β0 -2.02 0.66 -3.33 -2.47 -2.02 -1.59 -0.73
β1 1.95 0.30 1.36 1.75 1.95 2.15 2.54
β2 1.65 0.58 0.54 1.27 1.65 2.03 2.81
β3 0.13 0.62 -1.11 -0.27 0.12 0.53 1.35
σ 1.39 0.19 1.08 1.26 1.37 1.51 1.81

●

●

●

β
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Results: Skeptical prior

mean sd 2.5% 25% 50% 75% 97.5%

β0 -1.84 0.65 -3.12 -2.28 -1.84 -1.42 -0.54
β1 1.83 0.29 1.26 1.65 1.84 2.03 2.38
β2 1.65 0.54 0.58 1.30 1.65 2.01 2.72
β3 0.17 0.59 -1.00 -0.22 0.17 0.56 1.35
σ 1.39 0.19 1.07 1.25 1.37 1.50 1.81
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Remarks

Note that the skeptical prior tends to shrink the posterior
mean back towards 0, but also reduces the posterior variance

This trade (sacrificing bias to reduce variance) is also the
central idea in ridge regression

Note also that this is only a tendency, and depends the
correlation between the explanatory variables – in this
example, the posterior mean of β3 was larger in the skeptical
model

In this particular example, the posterior for σ was virtually
identical in both models, although this is not always the case
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Identifiability

Recall that the least-squares solution is unique only if the
design matrix X is full-rank

Thus, for example, we cannot fit the following model with
ordinary linear regression and obtain a unique solution β̂:

Metabol = β0 + β1Gastric+ β2Female+ β3Male,

where Male and Female are indicator functions, as the
columns of X are linearly dependent

What happens with a Bayesian regression model?

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 12/20



Prior and posterior
Identifiability

Identifiability in Bayesian models
Overparameterization

Uninformative prior, non-identifiable model

mean sd 2.5% 25% 50% 75% 97.5%

β0 -0.42 57.58 -113.37 -39.58 -0.29 38.31 112.66
β1 1.96 0.28 1.41 1.79 1.96 2.15 2.50
β2 -1.53 57.58 -114.87 -40.08 -1.62 37.74 111.21
β3 0.09 57.59 -113.08 -38.57 0.06 39.38 113.01
σ 1.36 0.18 1.06 1.23 1.34 1.48 1.78

●

●

●

●

β
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Remarks

Note that the distributions for β0, β2, and β3 (the three
columns that were linearly dependent) become extremely
wide, to the point where we cannot say that we know
anything about these three parameters

The posteriors for σ and β1, on the other hand, are unaffected

There is a certain similarity here to our “bad” Gibbs sampler
from the normal distribution lecture, in that our sampler is
meandering about aimlessly

In that example, however, the posterior was perfectly
well-defined – it was our sampler that failed us; here, this is
actually what the posterior looks like – we just have a
questionable model
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Skeptical prior, non-identifiable model

mean sd 2.5% 25% 50% 75% 97.5%

β0 -0.94 1.53 -3.88 -1.99 -0.96 0.09 2.04
β1 1.85 0.27 1.31 1.67 1.85 2.03 2.37
β2 -0.80 1.45 -3.61 -1.79 -0.78 0.18 1.98
β3 0.85 1.44 -1.99 -0.12 0.86 1.83 3.62
σ 1.37 0.19 1.06 1.24 1.35 1.48 1.80
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Note that “identifiability” in Bayesian regression is less
black-and-white than it is in maximum likelihood estimation:
having a somewhat informative prior can render a
non-identifiable likelihood identifiable

This, again, is similar to what is accomplished by ridge
regression, which lends stability to models that would
otherwise be overwhelmed by multicollinearity

The posterior for β0, β2, and β3 is still pretty wide, however –
this model is better, but still not very good
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Identifiability restriction

Nevertheless, the unidentifiable model is on to something: the
coefficients in our model would be more easily interpretable if
the intercept represented an overall average, and we had
parameters for males and females that represented their
departure from this overall average

What we require, however, is a restriction that keeps the
model identifiable:

β3 = β0 + δ/2

β2 = β0 − δ/2

With this parameterization in place, the likelihood for (β0, δ)
is identifiable, and (β2, β3) are determined by simple
transformation, giving them a reasonable posterior as well
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Centering

While we’re at it, we might want to subtract off the mean
from Gastric, to increase the interpretability of β0 as the
population average metabolism (average of males and
females, with average dehydrogenase levels)

Note that this does not change the meaning of β1, which still
represents the change in metabolism caused by a one-unit
change in dehydrogenase levels, but will affect the posterior of
β0

This is referred to as centering a variable, and has many
advantages; we will discuss it further in a few weeks
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Uninformative prior, reparameterized model

mean sd 2.5% 25% 50% 75% 97.5%
β0 1.26 0.12 1.03 1.18 1.26 1.34 1.51
β1 1.97 0.28 1.41 1.78 1.97 2.15 2.50
β2 0.45 0.27 -0.08 0.27 0.45 0.64 1.00
β3 2.07 0.30 1.47 1.87 2.07 2.27 2.67
δ 1.62 0.53 0.59 1.26 1.62 1.97 2.65
σ 1.37 0.19 1.07 1.24 1.35 1.48 1.80
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Remarks

Note that we could have obtained these results by fitting the
original model and deriving the male and female parameters
as functions of the original coefficients, as is typically done in
maximum likelihood estimation

The difference, however, is that MCMC methods allow such
constraints to be built directly into the model without any
added complications; this is not the case for maximum
likelihood

As we will see, such intentionally overparameterized models
(with suitable identifiability restrictions) will prove quite
helpful in hierarchical modeling
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