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Introduction

As we have seen, the ability to sample from the posterior
distribution is essential to the practice of Bayesian statistics,
as it allows Monte Carlo estimation of all posterior quantities
of interest

Typically however, direct sampling from the posterior is not
possible either

Today, we discuss two mechanisms that allow us to carry out
this sampling when a direct approach is not possible (Gibbs
sampling and the Metropolis-Hastings algorithm), as well as
discuss why these approaches work
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Markov chains

A sequence of random variables X(0), X(1), X(2), . . . is said to
form a Markov chain if, for all t,

p(X(t+1) = x) = t(x|X(t));

in other words, the distribution of X(t+1) depends only on the
previous draw, and is independent of X(0), X(1), . . . , X(t−1)

The function t(x|X(t)) defines the transition probabilities or
transition distribution of the chain
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Stationary distributions

A distribution π(x) is stationary with respect to a Markov
chain if, given that X(t) ∼ π, X(t+1) ∼ π
Provided that a Markov chain is positive recurrent, aperiodic,
and irreducible (next slide), it will converge to a unique
stationary distribution, also known as an equilibrium
distribution, as t→∞
This stationary distribution is determined entirely by the
transition probabilities of the chain; the initial value of the
chain is irrelevant in the long run

In Bayesian statistics, we will be interested in constructing
Markov chains whose equilibrium is the posterior distribution
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Conditions

The following conditions are required for a Markov chain to
converge to a unique stationary distribution (below, I use “set” to
refer to a set with nonzero probability π(A)):

Irreducibile: Any set A can be reached from any other set B
with nonzero probability

Positive recurrent: For any set A, the expected number of
steps required for the chain to return to A is finite

Aperiodic: For any set A, the number of steps required to
return to A must not always be a multiple of some value k

Thankfully, these conditions are typically met in Bayesian
statistics
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Metropolis-Hastings

Suppose that a Markov chain is in position x; the
Metropolis-Hastings algorithm is as follows:

(1) Propose a move to y with probability q(y|x)
(2) Calculate the ratio

r =
p(y)q(x|y)
p(x)q(y|x)

(3) Accept the proposed move with probability

α = min{1, r};

otherwise, remain at x (i.e., X(t+1) = X(t))
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Stationary distribution

The description on the previous slide allows asymmetric
proposals; if the proposal is symmetric, i.e., q(y|x) = q(x|y),
the ratio is simply r = p(y)/p(x)

Theorem (detailed balance): For any sets A and B,
P (A)T (B|A) = P (B)T (A|B), where T (A|B) is the
transition probability from B → A imposed by the
Metropolis-Hastings algorithm

Theorem: The Markov chain with transition probabilities
arising from the Metropolis-Hastings algorithm has the
posterior distribution p as a stationary distribution
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Example

As an example of how the Metropolis-Hastings algorithm
works, let’s sample from the following posterior:

Y ∼ t5(µ, 1)
µ ∼ t5(0, 1)

The following code can be used to calculate the posterior
density:

p <- function(mu) {

dt(mu, 5) * prod(dt(y, 5, mu))

}

In practice, it is better to work with probabilities on the log
scale to avoid numerical overflow/underflow, but the above
will be sufficient for our purposes today
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Example

The Metropolis algorithm can be coded as follows:

N <- 10000

mu <- numeric(N)

for (i in 1:(N-1)) {

proposal <- mu[i] + rnorm(1)

r <- p(proposal)/p(mu[i])

accept <- rbinom(1, 1, min(1,r))

mu[i+1] <- if (accept) proposal else mu[i]

}
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Results

Suppose we observe y = c(−1, 1, 5):
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Results

Now suppose we observe y = c(39, 41, 45):
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Remarks

The preceding plots are known as trace plots; we will discuss
trace plots further next week when we discuss convergence
diagnostics

The preceding examples illustrate the notion of Markov chains
converging to the posterior distribution regardless of where
they start

Note, however, that this may take a while (≈ 100 draws in the
second example; this can be much larger in multidimensional
problems)

Thus, it might be desirable to discard the beginning values of
the Markov chain – for the second example, only considering
draws from 101 onward to be draws from the posterior
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Burn-in

This idea is known as burn-in

Both BUGS and JAGS (and R2OpenBUGS and R2jags) allow
you to set the number of burn-in iterations – to run the
Markov chain for a while before you begin to record draws

The advantage of this is to eliminate dependency on the
initial values (which are arbitrary) from the results

Strictly speaking, burn-in is not necessary, since if you simply
run the chain long enough, the impact of the initial values will
gradually diminish and achieve the same result

Discarding the initial values of the chain, however, is often
faster, especially if you are interested in estimating quantities
pertaining to the tails of the distribution
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Autocorrelation

Note that although the marginal distribution of X(t)

converges to the posterior, that doesn’t mean that the chain
converges to a chain producing IID draws from the posterior

Indeed, in the second example, consecutive draws were quite
highly correlated (this is known as autocorrelation, which we
will discuss in greater depth next week)
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Proposal distribution: Tradeoffs

The high degree of autocorrelation is a consequence of the
proposal distribution

Newcomers to the Metropolis-Hastings algorithm often feel
that rejecting a proposal is a bad outcome and that we should
minimize the probability that it occurs

However, while an excessive amount of rejection is indeed
bad, too little rejection is also bad, as it indicates that the
proposals are too cautious and represent only very small
movements around the posterior distribution (giving rise to
high autocorrelation)
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Proposal distribution: Tradeoffs

Our original proposal had σ = 1; for the first example, this led
to an acceptance rate of 53.5%, for the second example it led
to an acceptance rate of 95.5%

Informally, it certainly appeared that the Markov chain worked
better in the first example than in the second

Formally, there are theoretical arguments indicating that the
optimal acceptance rate is 44% for one dimension, and has a
limit of 23.4% as the dimension goes to infinity

We can achieve these targets by modify the proposal;
specifically, by increasing or decreasing σ2, the variance of the
normal proposal
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Results: y = c(39, 41, 45), σ = 15

Acceptance rate: 49.6%
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Results: y = c(39, 41, 45), σ = 200

Acceptance rate: 4.9%
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Remarks

Traceplots should look like “fat, hairy caterpillars”, as they do
in slides 10 and 15; not like they do on slides 11 or 16

Both BUGS and JAGS allow for “adapting phases” in which
they try out different values of σ (or other such tuning
parameters) to see which ones work the best before they
actually start the “official” Markov chain; we will discuss
these as they come up
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Idea

Another extremely useful technique for sampling
multidimensional distributions is Gibbs sampling, which we
have already encountered

The basic idea is to split the multidimensional θ into blocks
(often scalars) and sample each block separately, conditional
on the most recent values of the other blocks

The beauty of Gibbs sampling is that it simplifies a complex
high-dimensional problem by breaking it down into simple,
low-dimensional problems
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Formal description

Formally, the algorithm proceeds as follows, where θ consists
of k blocks θ1, θ2, . . . , θk: at iteration (t),

Draw θ
(t+1)
1 from

p(θ1|θ(t)2 , θ
(t)
3 , . . . , θ

(t)
k )

Draw θ
(t+1)
2 from

p(θ2|θ(t+1)
1 , θ

(t)
3 , . . . , θ

(t)
k )

. . .

This completes one iteration of the Gibbs sampler, thereby
producing one draw θ(t+1); the above process is then repeated
many times

The distribution p(θ1|θ(t)2 , θ
(t)
3 , . . . , θ

(t)
k ) is known as the full

conditional distribution of θ1
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Gibbs: Illustration
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Justification for Gibbs sampling

Although they appear quite different, Gibbs sampling is a
special case of the Metropolis-Hasting algorithm

Specifically, Gibbs sampling involves a proposal from the full
conditional distribution, which always has a
Metropolis-Hastings ratio of 1 – i.e., the proposal is always
accepted

Thus, Gibbs sampling produces a Markov chain whose
stationary distribution is the posterior distribution, for all the
same reasons that the Metropolis-Hastings algorithm works
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Gibbs vs. Metropolis

Thus, there is no real conflict as far as using Gibbs sampling or
the Metropolis-Hastings algorithm to draw from the posterior

In fact, they are frequently used in combination with each
other

As we have seen, semi-conjugacy leads to Gibbs updates with
simple, established methods for drawing from the full
conditional distribution

In other cases, we may have to resort to Metropolis-Hastings
to draw from some of the full conditionals
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Variable-at-a-time Metropolis

This sort of approach is known as variable-at-a-time
Metropolis-Hastings or Metropolis-within-Gibbs

The advantage of the variable-at-a-time approach, as
mentioned earlier, is that it is much easier to propose updates
for a single variable than for many variables

The disadvantage, however, is that when variables are highly
correlated, it may be very difficult to change one without
simultaneously changing the other
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Gibbs with highly correlated parameters
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Regression: BUGS

Correlated posteriors can often arise in regression (see code for
details)
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Regression: JAGS

JAGS avoids this problem (for regression) by updating the block
(β1, β2) at once:
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Regression: BUGS

We can also avoid this problem in BUGS by centering the variables
or by specifying beta as a multivariate parameter
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Conclusion

Note that JAGS is not, in general, impervious to correlated
posteriors: it merely recognizes this situation for linear models
and GLMs

Certainly, there is a large body of work on other
computational approaches to sampling (slice sampling,
adaptive rejection sampling, Hamiltonian Monte Carlo, etc.);
covering such methods is beyond the scope of this course

Nevertheless, I hope that by exploring the two most widely
known methods (Metropolis and Gibbs), I have conveyed a
sense of how such MCMC sampling methods work, why they
work, and in what situations they may fail to work

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 30/30


	Markov chains
	The Metropolis-Hastings algorithm
	Gibbs sampling

