Model Selection and Multi-Model Inference: Big Picture

» Model Selection
» Controversial topic
b Lots of possible approaches (we will look at one)
» Bayes Factors/Posterior Model Probabilities
» Multiple implementations (we will look at one)
» Using RIMCMC
» Multi-model inference

» Approach for summarizing information (and uncertainty) across
multiple candidate models

» Bayesian model averaging
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Posterior Model Probabilities

» Consider k models: My, Mo, ..., My
» Model indicators
b Associated with model i are (a vector of) parameters 6;
» Of interest p(Mily),. .., p(Mkly)
» p(M;ly) is the posterior probability of model j being “true”
conditional on the data
» Simple specification
» Like most/all of Bayesian inference the devil is in the details
» Require p(My), p(Ma), ..., p(My)

» Prior model probabilities

» We will not talk a lot about these (but they are important)
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Simple Example

b Collected data yy,...,y,
b Hypothesize two possible models for the data:

b Model 1: yi,...,yn " N(0,1)
b Model 2: y1,...,yn 'f'lej\/(u,l)
b is unknown with prior u ~ N(0, 5?)

b Comparing p(Mi|y) and p(Maly)

) Effectively comparing whether y is zero or non-zero

b Look at this example in more detail later
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Bayes

Factors

Bayes factors are an alternative way to present the posterior

model probabilities

The Bayes factor (between model i and model j) is
M;
BF, — PLIM)
p(y|M;)

What is this quantity?

Define a marginal likelihood (for model /) as:

ply|M;) = / p(y16;, Mi)p(0:)d0;

Marginal likelihood ratio

) Parameters have been integrated out
» Prior distribution on parameter matters (more on this later)
b cf traditional likelihood ratio where 0 is set to some value
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Bayes Factors vs Posterior Model Probabilities

b Bayes factors have a direct relationship to posterior model

probabilities

_ pyIMi)
p(y|IM;)
_ PlyIMp(Mi) — ply) — p(M;)
p(y)  pyIM;)p(M;) p(Mi)
_ p(Mily) p(M;)
p(M;jly) p(M;)
_ Posterior odds
~ Prior odds

b i.e. Bayes factors are the mechanism that turn prior odds into

BF;

posterior odds

» Posterior odds = BF x prior odds
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Bayes Factors

b Jeffrey's suggests the following scale for Bayes factors

Bio Evidence for My
<1 Negative: support for My
1to3 Barely worth mentioning
3to 12 Positive
12 to 150 Strong
> 150 Very strong

» The Bayes factor (posterior model probabilities) can give you

evidence in support of a hypothesis/model
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Return to example

p Data: yi,...,V¥n
» Model 1: yi, ..., yn S N(0,1)
> Model 2: y1,...,y, %N(u,l)
b is unknown with prior 1 ~ N(0, 5?)
» We had n =100 and kK = 1. We observed y = 0.5
b Before we look at Bayes factor

b First look at the posterior distribution of x in model 2

Slide 7



Posterior of 1
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BF for example

» Data: y1,...,¥n
» Model 1: y1,...,yn 2 N7(0,1)
b Model 2: yl,...,y,,%./\/'(u,l)
b is unknown with prior u ~ N(0, 5?)

» We had n =100 and kK = 1. We observed y = 0.5

b In this example we can evaluate the marginal likelihoods

analytically (by hand):
2,2
BFy = (1 + nk?) %5 exp <7n n )72>

» We need to plug-in some values!
b BFy ~ 23600
» Strong support for model 2
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Caution I: Priors (on parameters) matter

» “Vague' /"non-informative” / “flat” priors can be problematic

b Plot posteriod distribution for 1 and BF,; over a range of &
values from 1 to 50,000

» The prior for p is becoming more and more flat
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Posterior distribution for p
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Caution I: Priors (on parameters) matter

» When k =1 we have strong support for model 2

» When k = 50,000 we have support for model 1
» Priors matter when using Bayes factors

b Even though the prior has little effect on the posterior
distribution for
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Caution |I: Model probabilities vs p-values

b Even though Bayes factors share a lot in common with

traditional hypothesis testing

» Not the same
» p(M;ly) is not the same as a p-value

» p(M;ly) is the probability of model j given the data y

b A p-value is the probability of observing data as (or more)

extreme than that observed assuming the null hypothesis is true.

b They are different quantities
b They often disagree

b Referred to as Lindley's paradox
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Problem

b It is easy to define a Bayes factor in terms of marginal
likelihoods

» Difficult to calculate it

b To find the marginal likelihood we need to evaluate the
(nasty) integral that led us to use MCMC in the first place
» One approach is to once again avoid evaluating this interval
using MCMC
» Use a special flavor of MCMC called trans-dimensional MCMC
» e.g. reversible jump MCMC
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Trans-dimensional MCMC

» Include a model indicator
» Another unknown
b Switch between models in different iterations
» e.g. move from model 1 in iteration 1 to model 4 in iteration 2, etc
» Find relative support for each model

» Posterior model probability is estimated as the % of iterations in

each model
» Why is it special /difficult?
» Have to take into account differences in the dimension of

parameters between different models
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Approach of Carlin and Chib

» Complete parameter space

b Make one “super” model that includes all parameters from every
model
» Model indicator that specifies which parameters are included in
the likelihood function
» Necessary to specify “pseudo-priors” for all parameters for when
they are not included in likelihood
» These can be chosen to “optimize” the algorithm (or chosen for

convenience)
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Reversible jump MCMC (Green)

b Consider moves between each pair of models separately

» Have to specify how parameters in model i correspond to
parameters in model j

p Take care when the dimension of the parameters differs
» Specify an “augmenting variable” that balances the dimension
b Various other approaches
b Show that the two approaches mentioned are more similar than it

appears

» Best seen with an example (in JAGS)
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Example: Return to Lake Brunner!

» Return rates for brown trout in Lake Brunner, New Zealand

p Tag and release trout. Observe which trout return one year later.

» Five candidate models:

1. logit(m;) = Bo

2. logit(m) = fo + B15;

3. logit(7;) = Bo + BaL;

4. logit(m;) = Bo + B1Si + BaLi

5. logit(m;) = Bo + 1Si + BaLi + PraSiLi
b In JAGS

'Example from Link and Barker (2010)
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JAGS code: part |

### Logistic regression
for (i in 1:n){
returned[i] ~ dbern(p[i])
logit(p[i]) <- betalO + in.mod.sex*betal*S[i] +
in.mod.len*beta2+L[i] +

in.mod.int*betal2*SL[i]
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JAGS code: part Il

### Priors

beta0 ~ dt(0,0.04,3)
betal ~ dt(0,0.25,3)
beta2 ~ dt(0,0.25,3)
betal2 ~ dt(0,0.25,3)
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JAGS code: part Il

### Model indicator
mod ~ dcat(p.model[1:5])

### Determining whether terms are in the model
mod4 <- (mod==4)

mod5 <- (mod==5)

in.mod.sex <- (mod==2) + mod4 + modb
in.mod.len <- (mod==3) + mod4 + modb

in.mod.int <- modb5
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Results
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Model Averaging

>

Suppose we have K candidate models

) e.g. linear regression with various possible predictor variables
In all models a quantity of interest «y is well defined

) e.g. prediction at a certain value

We could find the best model

b Make the prediction under that model

Suboptimal

» Not taking all uncertainty into account
» Uncertainty in the model selection process

b Interval estimate will be too precise

Make the prediction averaging across the models
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Model Averaging

>

Suppose for each of K models we have p(vy|y, M;)

» Posterior distribution of v under model i

We want the “"model averaged” posterior distribution

p(vly) = Zp Yys Mi)p(Mily)
i=1

This distribution takes into account the model uncertainty

) i.e. that we do not know the correct model M;
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Example

» We can do this for the Lake Brunner trout example.

b Predict the return probability for a trout with sex 0 of
(standardized) length 1.5.

» Either do this directly in JAGS (see model) or in R after model

is fitted (if we have stored the appropriate parameter values)
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JAGS code: part IV

### Predicting the observation
logit (pred.prob) <-
beta0 + in.mod.sex*betal*sexpred +
in.mod.len*beta2*lenpred +

in.mod.int*betal2*sexlenpred
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Results

—— Model 1
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—— Model 3
Model 4

—— Model 5

—— Model Averaged
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