Model Selection and Multi-Model Inference: Big Picture

- Model Selection
 - Controversial topic
 - Lots of possible approaches (we will look at one)
 - Bayes Factors/Posterior Model Probabilities
 - Multiple implementations (we will look at one)
 - Using RJMCMC
- Multi-model inference
 - Approach for summarizing information (and uncertainty) across multiple candidate models
 - Bayesian model averaging

Posterior Model Probabilities

- Consider k models: M_1 , M_2 , ..., M_k
 - Model indicators
 - Associated with model *i* are (a vector of) parameters θ_i
- Of interest $p(M_1|y), \ldots, p(M_k|y)$
 - ▶ p(M_j|y) is the posterior probability of model j being "true" conditional on the data
 - Simple specification
 - Like most/all of Bayesian inference the devil is in the details
 - Require $p(M_1), p(M_2), ..., p(M_k)$
 - Prior model probabilities
 - We will not talk a lot about these (but they are important)

Simple Example

- Collected data y_1, \ldots, y_n
- Hypothesize two possible models for the data:
 - Model 1: $y_1, \ldots, y_n \stackrel{iid}{\sim} \mathcal{N}(0, 1)$
 - Model 2: $y_1, \ldots, y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$
 -) μ is unknown with prior $\mu \sim \mathcal{N}(\mathbf{0},\kappa^2)$
- Comparing $p(M_1|y)$ and $p(M_2|y)$
 - Effectively comparing whether μ is zero or non-zero
- Look at this example in more detail later

Bayes Factors

- Bayes factors are an alternative way to present the posterior model probabilities
- The Bayes factor (between model *i* and model *j*) is

$$BF_{ij} = rac{p(y|M_i)}{p(y|M_j)}$$

- What is this quantity?
- Define a marginal likelihood (for model *i*) as:

$$p(y|M_i) = \int p(y| heta_i, M_i) p(heta_i) d heta_i$$

- Marginal likelihood ratio
 - Parameters have been integrated out
 - > Prior distribution on parameter matters (more on this later)
 -) cf traditional likelihood ratio where heta is set to some value $ilde{ heta}$

Bayes Factors vs Posterior Model Probabilities

 Bayes factors have a direct relationship to posterior model probabilities

$$BF_{ij} = \frac{p(y|M_i)}{p(y|M_j)}$$

= $\frac{p(y|M_i)p(M_i)}{p(y)} \frac{p(y)}{p(y|M_j)p(M_j)} \frac{p(M_j)}{p(M_i)}$
= $\frac{p(M_i|y)}{p(M_j|y)} \frac{p(M_j)}{p(M_i)}$
= $\frac{Posterior odds}{Prior odds}$

- i.e. Bayes factors are the mechanism that turn prior odds into posterior odds
 - Posterior odds = BF × prior odds

Bayes Factors

Jeffrey's suggests the following scale for Bayes factors

B ₁₀	Evidence for M_1
< 1	Negative: support for M_0
1 to 3	Barely worth mentioning
3 to 12	Positive
12 to 150	Strong
> 150	Very strong

The Bayes factor (posterior model probabilities) can give you evidence in support of a hypothesis/model

Return to example

- Data: y_1, \ldots, y_n
 - ▶ Model 1: $y_1, \ldots, y_n \stackrel{iid}{\sim} \mathcal{N}(0, 1)$
 - Model 2: $y_1, \ldots, y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$
 - $\blacktriangleright~\mu$ is unknown with prior $\mu \sim \mathcal{N}(\mathbf{0},\kappa^2)$
- We had n = 100 and $\kappa = 1$. We observed $\bar{y} = 0.5$
- Before we look at Bayes factor
 - First look at the posterior distribution of μ in model 2

Posterior of $\boldsymbol{\mu}$

μ

BF for example

Data:
$$y_1, \ldots, y_n$$

Model 1: $y_1, \ldots, y_n \stackrel{iid}{\sim} \mathcal{N}(0, 1)$
Model 2: $y_1, \ldots, y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$
 μ is unknown with prior $\mu \sim \mathcal{N}(0, \kappa^2)$

- We had n = 100 and $\kappa = 1$. We observed $\bar{y} = 0.5$
- In this example we can evaluate the marginal likelihoods analytically (by hand):

$$BF_{21} = (1 + n\kappa^2)^{-0.5} \exp\left(\frac{n^2\kappa^2}{2(1 + n\kappa^2)}\bar{y}^2\right)$$

- We need to plug-in some values!
 - $\blacktriangleright BF_{21} \approx 23600$
 - Strong support for model 2

Caution I: Priors (on parameters) matter

- "Vague" / "non-informative" / "flat" priors can be problematic
- Plot posteriod distribution for μ and BF₂₁ over a range of κ values from 1 to 50,000
 - \blacktriangleright The prior for μ is becoming more and more flat

Posterior distribution for $\boldsymbol{\mu}$

Bayes factor

Caution I: Priors (on parameters) matter

- When $\kappa = 1$ we have strong support for model 2
- When $\kappa = 50,000$ we have support for model 1

Priors matter when using Bayes factors

 \blacktriangleright Even though the prior has little effect on the posterior distribution for μ

Caution II: Model probabilities vs p-values

- Even though Bayes factors share a lot in common with traditional hypothesis testing
 - Not the same
- $p(M_j|y)$ is not the same as a p-value
 - $p(M_j|y)$ is the probability of model j given the data y
 - A p-value is the probability of observing data as (or more) extreme than that observed assuming the null hypothesis is true.
- They are different quantities
- They often disagree
 - Referred to as Lindley's paradox

Problem

- It is easy to define a Bayes factor in terms of marginal likelihoods
 - Difficult to calculate it
- To find the marginal likelihood we need to evaluate the (nasty) integral that led us to use MCMC in the first place
- One approach is to once again avoid evaluating this interval using MCMC
 - Use a special flavor of MCMC called trans-dimensional MCMC
 - e.g. reversible jump MCMC

Trans-dimensional MCMC

- Include a model indicator
- Another unknown
 - Switch between models in different iterations
 - e.g. move from model 1 in iteration 1 to model 4 in iteration 2, etc
 - Find relative support for each model
 - Posterior model probability is estimated as the % of iterations in each model
- Why is it special/difficult?
 - Have to take into account differences in the dimension of parameters between different models

Approach of Carlin and Chib

- Complete parameter space
 - Make one "super" model that includes all parameters from every model
 - Model indicator that specifies which parameters are included in the likelihood function
 - Necessary to specify "pseudo-priors" for all parameters for when they are not included in likelihood
 - These can be chosen to "optimize" the algorithm (or chosen for convenience)

Reversible jump MCMC (Green)

- Consider moves between each pair of models separately
 - Have to specify how parameters in model *i* correspond to parameters in model *j*
 - > Take care when the dimension of the parameters differs
 - > Specify an "augmenting variable" that balances the dimension
- Various other approaches
 - Show that the two approaches mentioned are more similar than it appears
- Best seen with an example (in JAGS)

Example: Return to Lake Brunner¹

- Return rates for brown trout in Lake Brunner, New Zealand
 - Tag and release trout. Observe which trout return one year later.
- Five candidate models:

1.
$$\operatorname{logit}(\pi_i) = \beta_0$$

2. logit
$$(\pi_i) = \beta_0 + \beta_1 S_i$$

3. logit
$$(\pi_i) = \beta_0 + \beta_2 L_i$$

4. logit
$$(\pi_i) = \beta_0 + \beta_1 S_i + \beta_2 L_i$$

5. logit
$$(\pi_i) = \beta_0 + \beta_1 S_i + \beta_2 L_i + \beta_{12} S_i L_i$$

In JAGS

¹Example from Link and Barker (2010)

JAGS code: part I

}

in.mod.int*beta12*SL[i]

JAGS code: part II

Priors

- beta0 ~ dt(0,0.04,3)
- beta1 ~ dt(0,0.25,3)
- beta2 ~ dt(0,0.25,3)

beta12 ~ dt(0,0.25,3)

JAGS code: part III

Model indicator

```
mod ~ dcat(p.model[1:5])
```

```
### Determining whether terms are in the model
mod4 <- (mod==4)
mod5 <- (mod==5)
in.mod.sex <- (mod==2) + mod4 + mod5
in.mod.len <- (mod==3) + mod4 + mod5
in.mod.int <- mod5</pre>
```

Results

- ▶ $p(M_1|y) \approx 0.837$
- ▶ $p(M_2|y) \approx 0.045$
- ▶ $p(M_3|y) \approx 0.110$
- ▶ $p(M_4|y) \approx 0.006$
- ▶ $p(M_5|y) \approx 0.003$

Model Averaging

- Suppose we have K candidate models
 - e.g. linear regression with various possible predictor variables
- > In all models a quantity of interest γ is well defined
 - e.g. prediction at a certain value
- We could find the best model
 - Make the prediction under that model
- Suboptimal
 - Not taking all uncertainty into account
 - Uncertainty in the model selection process
 - Interval estimate will be too precise
- Make the prediction averaging across the models

Model Averaging

- Suppose for each of K models we have $p(\gamma|y, M_i)$
 - Posterior distribution of γ under model *i*
- ▶ We want the "model averaged" posterior distribution

$$p(\gamma|y) = \sum_{i=1}^{K} p(\gamma|y, M_i) p(M_i|y)$$

- > This distribution takes into account the model uncertainty
 - i.e. that we do not know the correct model M_i

Example

- We can do this for the Lake Brunner trout example.
- Predict the return probability for a trout with sex 0 of (standardized) length 1.5.
- Either do this directly in JAGS (see model) or in R after model is fitted (if we have stored the appropriate parameter values)

JAGS code: part IV

```
### Predicting the observation
logit(pred.prob) <-
    beta0 + in.mod.sex*beta1*sexpred +
        in.mod.len*beta2*lenpred +
        in.mod.int*beta12*sexlenpred</pre>
```

Results

Predicted probability of return