
Model Selection and Multi-Model Inference: Big Picture

Model Selection

Controversial topic

Lots of possible approaches (we will look at one)

Bayes Factors/Posterior Model Probabilities

Multiple implementations (we will look at one)

Using RJMCMC

Multi-model inference

Approach for summarizing information (and uncertainty) across

multiple candidate models

Bayesian model averaging
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Posterior Model Probabilities

Consider k models: M1, M2, . . ., Mk

Model indicators

Associated with model i are (a vector of) parameters θi

Of interest p(M1|y), . . . , p(Mk |y)

p(Mj |y) is the posterior probability of model j being “true”

conditional on the data

Simple specification

Like most/all of Bayesian inference the devil is in the details

Require p(M1), p(M2), . . . , p(Mk)

Prior model probabilities

We will not talk a lot about these (but they are important)
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Simple Example

Collected data y1, . . . , yn

Hypothesize two possible models for the data:

Model 1: y1, . . . , yn
iid
∼ N (0, 1)

Model 2: y1, . . . , yn
iid
∼ N (µ, 1)

µ is unknown with prior µ ∼ N (0, κ2)

Comparing p(M1|y) and p(M2|y)

Effectively comparing whether µ is zero or non-zero

Look at this example in more detail later
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Bayes Factors

Bayes factors are an alternative way to present the posterior

model probabilities

The Bayes factor (between model i and model j) is

BFij =
p(y |Mi)

p(y |Mj)

What is this quantity?

Define a marginal likelihood (for model i) as:

p(y |Mi) =

∫

p(y |θi ,Mi)p(θi)dθi

Marginal likelihood ratio

Parameters have been integrated out

Prior distribution on parameter matters (more on this later)

cf traditional likelihood ratio where θ is set to some value θ̃
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Bayes Factors vs Posterior Model Probabilities

Bayes factors have a direct relationship to posterior model

probabilities

BFij =
p(y |Mi)

p(y |Mj)

=
p(y |Mi)p(Mi )

p(y)

p(y)

p(y |Mj)p(Mj)

p(Mj)

p(Mi)

=
p(Mi |y)

p(Mj |y)

p(Mj)

p(Mi)

=
Posterior odds

Prior odds

i.e. Bayes factors are the mechanism that turn prior odds into

posterior odds

Posterior odds = BF × prior odds
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Bayes Factors

Jeffrey’s suggests the following scale for Bayes factors

B10 Evidence for M1

< 1 Negative: support for M0

1 to 3 Barely worth mentioning

3 to 12 Positive

12 to 150 Strong

> 150 Very strong

The Bayes factor (posterior model probabilities) can give you

evidence in support of a hypothesis/model
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Return to example

Data: y1, . . . , yn

Model 1: y1, . . . , yn
iid
∼ N (0, 1)

Model 2: y1, . . . , yn
iid
∼ N (µ, 1)

µ is unknown with prior µ ∼ N (0, κ2)

We had n = 100 and κ = 1. We observed ȳ = 0.5

Before we look at Bayes factor

First look at the posterior distribution of µ in model 2
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Posterior of µ

0.0 0.2 0.4 0.6 0.8 1.0

µ
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BF for example

Data: y1, . . . , yn

Model 1: y1, . . . , yn
iid
∼ N (0, 1)

Model 2: y1, . . . , yn
iid
∼ N (µ, 1)

µ is unknown with prior µ ∼ N (0, κ2)

We had n = 100 and κ = 1. We observed ȳ = 0.5

In this example we can evaluate the marginal likelihoods

analytically (by hand):

BF21 = (1 + nκ2)−0.5 exp

(

n2κ2

2(1 + nκ2)
ȳ2

)

We need to plug-in some values!

BF21 ≈ 23600

Strong support for model 2
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Caution I: Priors (on parameters) matter

“Vague”/“non-informative”/“flat” priors can be problematic

Plot posteriod distribution for µ and BF21 over a range of κ

values from 1 to 50, 000

The prior for µ is becoming more and more flat

Slide 10



Posterior distribution for µ
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κ = 1
κ = 50000
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Bayes factor
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Caution I: Priors (on parameters) matter

When κ = 1 we have strong support for model 2

When κ = 50, 000 we have support for model 1

Priors matter when using Bayes factors

Even though the prior has little effect on the posterior

distribution for µ
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Caution II: Model probabilities vs p-values

Even though Bayes factors share a lot in common with

traditional hypothesis testing

Not the same

p(Mj |y) is not the same as a p-value

p(Mj |y) is the probability of model j given the data y

A p-value is the probability of observing data as (or more)

extreme than that observed assuming the null hypothesis is true.

They are different quantities

They often disagree

Referred to as Lindley’s paradox
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Problem

It is easy to define a Bayes factor in terms of marginal

likelihoods

Difficult to calculate it

To find the marginal likelihood we need to evaluate the

(nasty) integral that led us to use MCMC in the first place

One approach is to once again avoid evaluating this interval

using MCMC

Use a special flavor of MCMC called trans-dimensional MCMC

e.g. reversible jump MCMC
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Trans-dimensional MCMC

Include a model indicator

Another unknown

Switch between models in different iterations

e.g. move from model 1 in iteration 1 to model 4 in iteration 2, etc

Find relative support for each model

Posterior model probability is estimated as the % of iterations in

each model

Why is it special/difficult?

Have to take into account differences in the dimension of

parameters between different models
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Approach of Carlin and Chib

Complete parameter space

Make one “super” model that includes all parameters from every

model

Model indicator that specifies which parameters are included in

the likelihood function

Necessary to specify “pseudo-priors” for all parameters for when

they are not included in likelihood

These can be chosen to “optimize” the algorithm (or chosen for

convenience)
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Reversible jump MCMC (Green)

Consider moves between each pair of models separately

Have to specify how parameters in model i correspond to

parameters in model j

Take care when the dimension of the parameters differs

Specify an “augmenting variable” that balances the dimension

Various other approaches

Show that the two approaches mentioned are more similar than it

appears

Best seen with an example (in JAGS)
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Example: Return to Lake Brunner1

Return rates for brown trout in Lake Brunner, New Zealand

Tag and release trout. Observe which trout return one year later.

Five candidate models:

1. logit(πi ) = β0

2. logit(πi ) = β0 + β1Si

3. logit(πi ) = β0 + β2Li

4. logit(πi ) = β0 + β1Si + β2Li

5. logit(πi ) = β0 + β1Si + β2Li + β12SiLi

In JAGS

1Example from Link and Barker (2010)
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JAGS code: part I

### Logistic regression

for (i in 1:n){

returned[i] ~ dbern(p[i])

logit(p[i]) <- beta0 + in.mod.sex*beta1*S[i] +

in.mod.len*beta2*L[i] +

in.mod.int*beta12*SL[i]

}
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JAGS code: part II

### Priors

beta0 ~ dt(0,0.04,3)

beta1 ~ dt(0,0.25,3)

beta2 ~ dt(0,0.25,3)

beta12 ~ dt(0,0.25,3)
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JAGS code: part III

### Model indicator

mod ~ dcat(p.model[1:5])

### Determining whether terms are in the model

mod4 <- (mod==4)

mod5 <- (mod==5)

in.mod.sex <- (mod==2) + mod4 + mod5

in.mod.len <- (mod==3) + mod4 + mod5

in.mod.int <- mod5
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Results

p(M1|y) ≈ 0.837

p(M2|y) ≈ 0.045

p(M3|y) ≈ 0.110

p(M4|y) ≈ 0.006

p(M5|y) ≈ 0.003
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Model Averaging

Suppose we have K candidate models

e.g. linear regression with various possible predictor variables

In all models a quantity of interest γ is well defined

e.g. prediction at a certain value

We could find the best model

Make the prediction under that model

Suboptimal

Not taking all uncertainty into account

Uncertainty in the model selection process

Interval estimate will be too precise

Make the prediction averaging across the models
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Model Averaging

Suppose for each of K models we have p(γ|y ,Mi)

Posterior distribution of γ under model i

We want the “model averaged” posterior distribution

p(γ|y) =
K
∑

i=1

p(γ|y ,Mi )p(Mi |y)

This distribution takes into account the model uncertainty

i.e. that we do not know the correct model Mi
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Example

We can do this for the Lake Brunner trout example.

Predict the return probability for a trout with sex 0 of

(standardized) length 1.5.

Either do this directly in JAGS (see model) or in R after model

is fitted (if we have stored the appropriate parameter values)
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JAGS code: part IV

### Predicting the observation

logit(pred.prob) <-

beta0 + in.mod.sex*beta1*sexpred +

in.mod.len*beta2*lenpred +

in.mod.int*beta12*sexlenpred
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Results

0.00 0.05 0.10 0.15 0.20

Predicted probability of return

Model 1
Model 2
Model 3
Model 4
Model 5
Model Averaged
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