Model Selection and Multi-Model Inference: Big Picture

- Model Selection
- Controversial topic
- Lots of possible approaches (we will look at one)
- Bayes Factors/Posterior Model Probabilities
- Multiple implementations (we will look at one)
- Using RJMCMC
- Multi-model inference
- Approach for summarizing information (and uncertainty) across multiple candidate models
- Bayesian model averaging

Posterior Model Probabilities

- Consider k models: $M_{1}, M_{2}, \ldots, M_{k}$
- Model indicators
- Associated with model i are (a vector of) parameters θ_{i}
- Of interest $p\left(M_{1} \mid y\right), \ldots, p\left(M_{k} \mid y\right)$
- $p\left(M_{j} \mid y\right)$ is the posterior probability of model j being "true" conditional on the data
- Simple specification
- Like most/all of Bayesian inference the devil is in the details
- Require $p\left(M_{1}\right), p\left(M_{2}\right), \ldots, p\left(M_{k}\right)$
- Prior model probabilities
- We will not talk a lot about these (but they are important)

Simple Example

- Collected data y_{1}, \ldots, y_{n}
- Hypothesize two possible models for the data:
- Model 1: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$
- Model 2: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \mathcal{N}(\mu, 1)$
- μ is unknown with prior $\mu \sim \mathcal{N}\left(0, \kappa^{2}\right)$
- Comparing $p\left(M_{1} \mid y\right)$ and $p\left(M_{2} \mid y\right)$
- Effectively comparing whether μ is zero or non-zero
- Look at this example in more detail later

Bayes Factors

- Bayes factors are an alternative way to present the posterior model probabilities
- The Bayes factor (between model i and model j) is

$$
B F_{i j}=\frac{p\left(y \mid M_{i}\right)}{p\left(y \mid M_{j}\right)}
$$

- What is this quantity?
- Define a marginal likelihood (for model i) as:

$$
p\left(y \mid M_{i}\right)=\int p\left(y \mid \theta_{i}, M_{i}\right) p\left(\theta_{i}\right) d \theta_{i}
$$

- Marginal likelihood ratio
- Parameters have been integrated out
- Prior distribution on parameter matters (more on this later)
- cf traditional likelihood ratio where θ is set to some value $\tilde{\theta}$

Bayes Factors vs Posterior Model Probabilities

- Bayes factors have a direct relationship to posterior model probabilities

$$
\begin{aligned}
B F_{i j} & =\frac{p\left(y \mid M_{i}\right)}{p\left(y \mid M_{j}\right)} \\
& =\frac{p\left(y \mid M_{i}\right) p\left(M_{i}\right)}{p(y)} \frac{p(y)}{p\left(y \mid M_{j}\right) p\left(M_{j}\right)} \frac{p\left(M_{j}\right)}{p\left(M_{i}\right)} \\
& =\frac{p\left(M_{i} \mid y\right)}{p\left(M_{j} \mid y\right)} \frac{p\left(M_{j}\right)}{p\left(M_{i}\right)} \\
& =\frac{\text { Posterior odds }}{\text { Prior odds }}
\end{aligned}
$$

- i.e. Bayes factors are the mechanism that turn prior odds into posterior odds
- Posterior odds $=\mathrm{BF} \times$ prior odds

Bayes Factors

- Jeffrey's suggests the following scale for Bayes factors

B_{10}	Evidence for M_{1}
<1	Negative: support for M_{0}
1 to 3	Barely worth mentioning
3 to 12	Positive
12 to 150	Strong
>150	Very strong

- The Bayes factor (posterior model probabilities) can give you evidence in support of a hypothesis/model

Return to example

- Data: y_{1}, \ldots, y_{n}
- Model 1: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$
- Model 2: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \mathcal{N}(\mu, 1)$
- μ is unknown with prior $\mu \sim \mathcal{N}\left(0, \kappa^{2}\right)$
- We had $n=100$ and $\kappa=1$. We observed $\bar{y}=0.5$
- Before we look at Bayes factor
- First look at the posterior distribution of μ in model 2

Posterior of μ

BF for example

- Data: y_{1}, \ldots, y_{n}
- Model 1: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$
- Model 2: $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \mathcal{N}(\mu, 1)$
- μ is unknown with prior $\mu \sim \mathcal{N}\left(0, \kappa^{2}\right)$
- We had $n=100$ and $\kappa=1$. We observed $\bar{y}=0.5$
- In this example we can evaluate the marginal likelihoods analytically (by hand):

$$
B F_{21}=\left(1+n \kappa^{2}\right)^{-0.5} \exp \left(\frac{n^{2} \kappa^{2}}{2\left(1+n \kappa^{2}\right)} \bar{y}^{2}\right)
$$

- We need to plug-in some values!
- $B F_{21} \approx 23600$
- Strong support for model 2

Caution I: Priors (on parameters) matter

- "Vague" / "non-informative" / "flat" priors can be problematic
- Plot posteriod distribution for μ and $B F_{21}$ over a range of κ values from 1 to 50,000
- The prior for μ is becoming more and more flat

Posterior distribution for μ

Bayes factor

Caution I: Priors (on parameters) matter

- When $\kappa=1$ we have strong support for model 2
- When $\kappa=50,000$ we have support for model 1
- Priors matter when using Bayes factors
- Even though the prior has little effect on the posterior distribution for μ

Caution II: Model probabilities vs p-values

- Even though Bayes factors share a lot in common with traditional hypothesis testing
- Not the same
- $p\left(M_{j} \mid y\right)$ is not the same as a p -value
- $p\left(M_{j} \mid y\right)$ is the probability of model j given the data y
- A p-value is the probability of observing data as (or more) extreme than that observed assuming the null hypothesis is true.
- They are different quantities
- They often disagree
- Referred to as Lindley's paradox

Problem

- It is easy to define a Bayes factor in terms of marginal likelihoods
- Difficult to calculate it
- To find the marginal likelihood we need to evaluate the (nasty) integral that led us to use MCMC in the first place
- One approach is to once again avoid evaluating this interval using MCMC
- Use a special flavor of MCMC called trans-dimensional MCMC
- e.g. reversible jump MCMC

Trans-dimensional MCMC

- Include a model indicator
- Another unknown
, Switch between models in different iterations
- e.g. move from model 1 in iteration 1 to model 4 in iteration 2, etc
- Find relative support for each model
- Posterior model probability is estimated as the \% of iterations in each model
- Why is it special/difficult?
- Have to take into account differences in the dimension of parameters between different models

Approach of Carlin and Chib

- Complete parameter space
- Make one "super" model that includes all parameters from every model
- Model indicator that specifies which parameters are included in the likelihood function
- Necessary to specify "pseudo-priors" for all parameters for when they are not included in likelihood
- These can be chosen to "optimize" the algorithm (or chosen for convenience)

Reversible jump MCMC (Green)

- Consider moves between each pair of models separately
- Have to specify how parameters in model i correspond to parameters in model j
- Take care when the dimension of the parameters differs
- Specify an "augmenting variable" that balances the dimension
- Various other approaches
- Show that the two approaches mentioned are more similar than it appears
- Best seen with an example (in JAGS)

Example: Return to Lake Brunner ${ }^{1}$

- Return rates for brown trout in Lake Brunner, New Zealand
- Tag and release trout. Observe which trout return one year later.
- Five candidate models:

1. $\operatorname{logit}\left(\pi_{i}\right)=\beta_{0}$
2. $\operatorname{logit}\left(\pi_{i}\right)=\beta_{0}+\beta_{1} S_{i}$
3. $\operatorname{logit}\left(\pi_{i}\right)=\beta_{0} \quad+\beta_{2} L_{i}$
4. $\operatorname{logit}\left(\pi_{i}\right)=\beta_{0}+\beta_{1} S_{i}+\beta_{2} L_{i}$
5. $\operatorname{logit}\left(\pi_{i}\right)=\beta_{0}+\beta_{1} S_{i}+\beta_{2} L_{i}+\beta_{12} S_{i} L_{i}$

- In JAGS

JAGS code: part I

```
### Logistic regression
for (i in 1:n){
    returned[i] ~ dbern(p[i])
    logit(p[i]) <- beta0 + in.mod.sex*beta1*S[i] +
        in.mod.len*beta2*L[i] +
    in.mod.int*beta12*SL[i]
}
```


JAGS code: part II

```
### Priors
beta0 ~ dt (0,0.04,3)
beta1 ~ dt (0,0.25,3)
beta2 ~ dt (0,0.25,3)
beta12 ~ dt(0,0.25,3)
```


JAGS code: part III

```
### Model indicator
mod ~ dcat(p.model[1:5])
### Determining whether terms are in the model
mod4 <- (mod==4)
mod5 <- (mod==5)
in.mod.sex <- (mod==2) + mod4 + mod5
in.mod.len <- (mod==3) + mod4 + mod5
in.mod.int <- mod5
```


Results

- $p\left(M_{1} \mid y\right) \approx 0.837$
- $p\left(M_{2} \mid y\right) \approx 0.045$
- $p\left(M_{3} \mid y\right) \approx 0.110$
- $p\left(M_{4} \mid y\right) \approx 0.006$
- $p\left(M_{5} \mid y\right) \approx 0.003$

Model Averaging

- Suppose we have K candidate models
- e.g. linear regression with various possible predictor variables
- In all models a quantity of interest γ is well defined
- e.g. prediction at a certain value
- We could find the best model
- Make the prediction under that model
- Suboptimal
- Not taking all uncertainty into account
- Uncertainty in the model selection process
- Interval estimate will be too precise
- Make the prediction averaging across the models

Model Averaging

- Suppose for each of K models we have $p\left(\gamma \mid y, M_{i}\right)$
- Posterior distribution of γ under model i
- We want the "model averaged" posterior distribution

$$
p(\gamma \mid y)=\sum_{i=1}^{K} p\left(\gamma \mid y, M_{i}\right) p\left(M_{i} \mid y\right)
$$

- This distribution takes into account the model uncertainty
- i.e. that we do not know the correct model M_{i}

Example

- We can do this for the Lake Brunner trout example.
- Predict the return probability for a trout with sex 0 of (standardized) length 1.5 .
- Either do this directly in JAGS (see model) or in R after model is fitted (if we have stored the appropriate parameter values)

JAGS code: part IV

\#\#\# Predicting the observation
logit(pred.prob) <-
beta0 + in.mod.sex*beta1*sexpred +
in.mod.len*beta2*lenpred +
in.mod.int*beta12*sexlenpred

Results

