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Model comparison

Thus far, we have looked at residuals in a fairly exploratory
fashion to motivate the need for more flexible models

Our next two lectures will focus on the issue of model
comparison using more objective/systematic approaches

Today’s topic is the development of an AIC-like criterion for
evaluating a series of models in terms of their predictive ability

Thursday’s lecture will focus on model comparison from a
different perspective, that of considering, given two models
M1 and M2, the probabilities Pr(M1) and Pr(M2) of each
model being the correct one
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Deviance

A useful measure of how well the model fits the data, whether
or frequentist and Bayesian, is the deviance:

D(θ) = −2 log p(y|θ)

Remarks:

High values of D(θ) indicate low values of the log-likelihood
and that the data deviates substantially from the model’s
assumptions
For normally distributed data with σ2 treated as known,
D(θ) = RSS
D(θ) is a function of θ and thus has a posterior distribution
like any other quantity; it is calculated automatically by both
BUGS and JAGS provided that DIC=TRUE (which it is, by
default)
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In-sample vs. out-of-sample prediction

As you presumably know from earlier modeling courses,
however, deviance measures only the in-sample accuracy of
the model, and complex models will always fit the observed
data better than simple models

That does not mean, however, that complex models are
always better – their estimates can be highly variable
(frequentist viewpoint)/their posterior distributions can highly
diffuse (Bayesian viewpoint)

The true test of a model is out-of-sample prediction – how
well the model can predict future observations – and simple
models often outperform complex models in this regard
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External validation and cross-validation

In principle, one could use a portion of the data to fit a
model, then go out and collect more data to evaluate the
predictive ability of the model

In reality, however, data is usually quite precious and we
would like to use all of it to fit the model

Another approach is cross-validation, in which one fits a
model leaving some of the data out, predicts the left-out
observations, and repeats the process so that each observation
gets a turn being left out and predicted
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AIC

This can easily become computationally intensive, especially
with complicated models

For this reason, there has been considerable interest in both
Bayesian and frequentist circles to working out numerical
approximations to this quantity

The most well-known frequentist approximation to this
quantity is the Akaike Information Criterion:

AIC = D(θ̂) + 2p,

where p is the degrees of freedom in the model
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Degrees of freedom

In typical settings in which AIC is used, the degrees of
freedom is the same as the number of parameters in the
model (hence the p notation)

Directly applying AIC to Bayesian settings, however, is
somewhat problematic when informative priors are employed,
as the prior restricts the freedom of the parameters

For example, in our linear regression examples, the models
with reference priors and skeptical priors had the same
numbers of parameters, but the models were effective not
equally “complex” and their posterior distributions were not
equally diffuse
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Plummer approach

Quadratic approximation to the deviance

Consider a quadratic approximation to the deviance about the
posterior mean:

D(θ) ≈ D(θ̄) +D′(θ̄)T (θ − θ̄) +
1

2
(θ − θ̄)TD′′(θ̄)(θ − θ̄)

Now, with y (and thus, θ̄) fixed and θ random, we have:

ED(θ) ≈ D(θ̄) + tr (VI) ,

where V is the posterior variance of θ, I is the Fisher
information evaluated at the posterior mean, and tr (VI)
takes the place of p in the analogous sampling distribution
approximation
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pD

This approximation suggests a measure of the effective
number of parameters in a model (Spiegelhalter et al., 2002):

pD ≡ tr (VI)

≈ D̄ −D(θ̄)

To gain some insight into pD, let’s consider the linear
regression case:

pD = tr
[
I(Ω0 + I)−1

]
,

or, roughly, the number of coefficients to be estimated times
the fraction of the posterior precision that comes from the
information
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pD: Another interpretation

Another way of thinking about pD is that it represents the
difference between the posterior mean deviance and the
deviance of the posterior mean

If the posterior for θ is relatively concentrated around θ̄, D(θ)
will typically be near D(θ) and pD will be small

If the posterior for θ is diffuse, D(θ) might be very large for
some values of θ, leading to a large D̄ and a large pD
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Example: Regression

For a more specific example, let’s go back to our alcohol
metabolism example and consider two models: the likelihoods
are the same, but the priors are

MR : βj ∼ N(0, 0.0001−1)

MS : βj ∼ N
(

0, {10Var(xj)}−1
)

j 6= 0

This produces pD estimates of

MR : p̂D = 5.0

MS : p̂D = 3.2
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pD: Caveat

It should be noted that this pD estimate is only as good as
the quadratic approximation to the deviance about the
posterior mean

As an example of a case where this approximation is poor,
suppose we have the following model:

Y ∼ t4(µ, 1)

µ ∼ t4(0, 1)

and observe y = 10
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pD: Caveat (cont’d)
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For this example, p̂D = −1.1
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pV

An alternative estimate of the effective number of parameters
in situations with weak priors is to note that when the prior is
weak, V ≈ I θ̄, and thus

D(θ) ≈ D(θ̄) + χ2
p

This approximation suggests ED(θ) ≈ p as before and
Var{D(θ)} ≈ 2p and thus the following estimator (Gelman et
al., 2004):

p̂V = Var{D(θ)}/2
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pV (cont’d)

pV has certain advantages, such as the fact that it cannot be
negative and can always be calculated (at no extra difficulty
or cost), even when other approaches cannot (we will see an
example of this later)

However, it is worth noting that it is not a meaningful
estimator for the effective number of parameters in cases with
informative priors

For example, in our regression example from earlier,

MR : p̂V = 5.9

MS : p̂V = 23.5
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Extracting pD from BUGS/JAGS

In both BUGS and JAGS, an estimate of the effective number
of parameters is provided by print(fit) if using
R2OpenBUGS or R2jags; alternatively, one can go to Inference
→ DIC in the OpenBUGS GUI

However, it is worth being aware of the fact that pD is
computed by BUGS but not by JAGS; print(fit) returns
pV as the degrees of freedom estimate in R2jags
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popt

JAGS has its own approach for calculating degrees of freedom,
based on expected values of Kullback-Leibler divergences
between multiple MCMC chains (Plummer, 2008)

The details are beyond the scope of the course, but the
concept is the same:

ED(θ) = D̄ + popt,

where popt is a measure of how optimistic D̄ is as a measure
of the actual out-of-sample deviance ED(θ)
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Obtaining popt in R2jags

One can obtain popt in R2jags through the dic.samples
function:

fit <- jags(...)

dev <- dic.samples(fit$model, n.iter, type="popt")

dev

Note that, unlike the calculation of pD in BUGS, this (a)
requires n.chains to be at least 2, and (b) requires a
separate MCMC calculation

For the regression example:

MR : p̂opt = 12.66

MS : p̂opt = 10.29

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 18/23



Introduction
Estimating the degrees of freedom

DIC

DIC

The measure of fit, D̄, may be combined with the measure of
model complexity, pD, to produce the Deviance Information
Criterion:

DIC = D̄ + pD

Note that

DIC = D(θ̄) + 2pD;

thus, in cases with weak prior information, where θ̄ ≈ θ̂ and
pD ≈ p, DIC ≈ AIC
One may define similar criteria for the other model complexity
measures:

DICV = D̄ + pV

DICopt = D̄ + popt
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Interpretation of DIC

It seems fairly clear that the absolute scale of DIC is fairly
meaningless, as it depends on factors such as normalizing
constants, but is there a meaningful relative scale?

In other words, suppose DIC1 = 100 and DIC2 = 105; is that
a meaningful difference?

For nested models, a rough rule of thumb is that AIC
differences less than 2 are insignificant, while AIC differences
larger than 10 essentially rule out the model with the larger
AIC

This would then seem to be a reasonable rule of thumb for
DIC with nested models as well, but no meaningful rules of
thumb have been proposed for non-nested models, or for
DICopt (indeed, it may be that a meaningful rule isn’t
possible)
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Regression example

D̄ pD popt DIC DICopt

Reference 111.4 5.0 12.3 116.4 123.6
Skeptical 122.8 3.2 10.8 125.9 133.7
Interactions 106.7 11.2 35.5 121.8 142.3
Intrx., > 0 110.8 6.2 22.1 117.0 132.9
0-intercept 105.3 4.9 15.1 110.2 120.4

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 21/23



Introduction
Estimating the degrees of freedom

DIC

Hills data

D̄ pD popt DIC DICopt

Normal 288.5 4.0 12.4 292.4 300.9
t5 260.9 4.2 13.4 265.1 274.3
ν ∝ ν−1 249.1 5.5 14.3 254.8 263.4
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Roots data

For the roots data, the usual DIC approach cannot be used,
since log p(y|θ̄) is not clearly defined for mixture distributions

The DICopt approach does work in general for mixture
distributions, although it fails here, calculating a popt
contribution of NaN for all the observations with Roots = 0

The pV approach is straightforward, however:

D̄ pV DICV

Poisson 1574 2.0 1576
ZIP 1068 31.4 1099
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