
Long-run equivalence
Some small-sample advantages

Frequentist properties of Bayesian methods

Patrick Breheny

February 14

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/16



Long-run equivalence
Some small-sample advantages

Introduction

Today’s lecture is a brief departure from our Bayesian
paradigm

If an unobservable parameter θ truly is random, then using
Bayes rule to obtain a posterior is an unavoidable
mathematical fact; anything else is incoherent

However, even if we don’t believe in θ being random, we may
still be interested in using Bayesian methods since they usually
prove to have good frequentist properties as well
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An informal Bernstein-von Mises Theorem

To begin with, we demonstrate that, given the same
likelihood, the Bayesian and frequentist answers approach
equivalency in an asymptotic sense (as n→∞)

Theorem: Suppose Y1, Y2, . . . |θ ∼ p(y|θ0) and that our prior
places positive density in a neighborhood surrounding θ0.
Then, assuming the same regularity conditions that are
required for asymptotic likelihood theory, we have that

θ|y .∼ N(θ0, I(θ0)
−1),

where I is the Fisher information
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Remarks

Note, however, the difference between the result on the
previous slide and likelihood theory result: the previous slide
describes the posterior distribution of θ, while the likelihood
theory result describes the sampling distribution of θ̂

Note that the posterior distribution is somewhat more
complicated than a sampling distribution, in that it is a
conditional, and hence stochastic, distribution

For this reason, the theorem on the previous slide is
intentionally a bit loose in its convergence statement

It can, however, be made more rigorous, as well as extended
to the case of multivariate θ; the result is known as the
Bernstein-von Mises theorem
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Implications

The Bernstein-von Mises theorem has a number of powerful
implications:

Bayesian methods are consistent: Letting B denote a ball – of
any radius, no matter how small – encompassing θ0, the
posterior probability that θ ∈ B will always go to 1 as n→∞
(this is sometimes referred to as concentration of the
posterior)

Bayesian posteriors are asymptotically normal: distinctions
between posterior modes, means, medians, central intervals
and HPD intervals all become irrelevant as n grows large

Inferences from each paradigm will eventually become
equivalent: Not merely will both frequentist and Bayesian
procedures converge to the truth, but confidence intervals will
eventually coincide with posterior intervals
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Likelihood-based versus procedural methods

Thus, for all the fundamental philosophical differences
between Bayesian and frequentist methods, they actually
produce pretty similar results given enough data

However, this conclusion only applies to parametric models
with fully specified likelihoods

A number of frequentist methods are nonparametric, and do
not necessarily specify any sort of likelihood or model for the
data (e.g., Wilcoxon rank-sum tests, classification trees); our
textbook calls these approaches “procedural”, as opposed to
model-based

There is such a thing as “Bayesian nonparametrics”, although
it is (a) quite a bit different, conceptually, from a Wilcoxon
rank-sum test, and (b) fairly advanced and beyond the scope
of this course (although see section 11.8 if you are interested)
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Caveats

So to summarize, Bayesian and frequentist methods often produce
similar conclusions, with the following caveats:

The frequentist approach permits the use of likelihood-free
procedures like permutation tests that have no real Bayesian
analogue

As we have remarked previously, there is typically no direct
Bayesian analogue to the p-value, and even when there is (i.e.,
with a mixture prior), there is no guarantee of agreement

Agreement is only guaranteed for large sample sizes

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 7/16



Long-run equivalence
Some small-sample advantages

Introduction

To follow up on the final caveat, we now look at a few
examples involving small/finite sample sizes

As we will see, Bayesian methods typically have satisfactory
small-sample performance – indeed, often superior to that of
likelihood-based alternatives
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Regression

Suppose that we fit a linear regression model with the
following prior on β:

β ∼ N(0, ω0I);

let β̂
Bayes

denote the posterior mean

Theorem: There always exists a value of ω0 such that the

MSE of β̂
Bayes

is less than the MSE of β̂
OLS

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 9/16



Long-run equivalence
Some small-sample advantages

The “many normal means” problem

A related problem is the following: Suppose Yij ∼ N(θi, σ
2)

and we are interested in estimating θ

The obvious estimator is ȳ, the observed means

However, the theorem on the previous slide implies that we
can always choose a prior θi ∼ N(0, ω−1

0 ) such that the
estimator

θ̂i =
ȳi

1 + λ
,

where λ = ω0σ
2/ni, has a lower MSE than ȳi
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Shrinkage

As remarked earlier, typically in ridge regression we do not
penalize the intercept; this leads to the estimator

θ̂i = ȳ +
ȳi − ȳ
1 + λ

,

where ȳ is the overall (“grand”) mean; this estimator can also
be shown to be superior to ȳ for a certain range of λ values

In words, we can always obtain superior estimation accuracy
by shrinking individual means towards the common mean
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The James-Stein estimator

An even more remarkable result was shown by Charles Stein
and Willard James, who derived an empirical choice for λ

Letting θ̂
JS

denote this estimator, James & Stein showed that

θ̂
JS

uniformly dominates ȳ in terms of MSE (i.e., has a lower
MSE for all values of θ0

In the case where all samples have the same number of
observations n, the James-Stein shrinkage factor is
(p− 3)/(np− p):

Shrinkage
n p factor

6 5 0.08
20 5 0.02
2 100 0.97
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Empirical Bayes

The James-Stein estimator is not a purely Bayesian approach,
in that it uses the observed data to specify a prior (which is
obviously not “prior”)

Instead, it falls under the category of what is known as
emprical Bayes, which allows the use of data to specify what
are considered to be nuisance parameters in priors, thereby in
some sense combining ideas from frequentist and Bayesian
analysis

The advantage of these methods, of course, is that they are
easy to apply and do not require one to think about priors; the
disadvantage is that they treat estimates as known quantities
in specifying priors, and thus ignore some sources of variability

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 13/16



Long-run equivalence
Some small-sample advantages

Binomial coverage

The previous examples have focused on estimation; we now
turn provide an example dealing with coverage

Consider the problem of obtaining a confidence interval for a
binomial proportion

What is the frequentist coverage of the Bayesian HPD
interval? We will compare it with three frequentist methods:
the Wald, Score, and Clopper-Pearson methods
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Simulation results, n = 15
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No method can achieve perfect coverage here, but the Bayes
approach is generally closest to the nominal coverage of 90%
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Final remarks

In summary,

You don’t necessarily have to believe in the Bayesian
paradigm to employ a Bayesian analysis (and vice versa)

With enough data, the two frameworks provide equivalent
answers, and with smaller data sets, Bayes approaches can
have attractive frequentist properties

Furthermore, MCMC/BUGS often makes it easy to implement
unconventional models and handle the complications of real
data and inferences regarding functions of parameters
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