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Introduction

Last time we explored the basic linear regression model from a
Bayesian perspective

Today, we will look at various ways in which the linear
regression model can be extended

Specifically, we will consider four examples, all of which have
some sort of frequentist analog; however, as we will see, the
flexibility of the Bayesian approach makes these and further
extensions straightforward to implement and interpret
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Scottish hill races

Our first extension is robust regression: the normality
assumption of OLS linear regression renders it quite sensitive
to outliers

A classic data set in the this literature pertains to hill racing
(apparently a somewhat popular sport in Scotland)

The data set hills.txt contains information on the winning
times in 1984 for 35 Scottish hill races, as well as two factors
which presumably influence the duration of the race:

dist: The distance of the race (in miles)
climb: The elevation change (in feet)
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Residuals from OLS fit

Fitting a simple linear regression model for time assuming additive
linear relationships for dist and climb, we obtain the following
residuals:
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Using a thicker-tailed distribution

To reduce the impact of the fit of the model, we can replace
the normal distribution with a thicker-tailed distribution

A natural choice is the t-distribution, which can be
implemented by simply replacing the normal likelihood with:

time[i] ~ dt(mu[i], tau, nu)

Recall that as ν →∞, the t-distribution resembles the
normal, but for small ν has considerably thicker tails
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Contrasting the two posteriors

Climb (100 fit) Dist. (1 mi)
Mean SD Mean SD

Normal 1.11 0.21 6.21 0.62
t5 0.81 0.15 6.59 0.29

Recall that there are two large outliers in this data set; as they are
in some sense downweighted, there is a modest change in the
posterior means (the posterior mean for distance goes up, while
the one for climb goes down), and a sizeable drop (roughly 2-fold)
in the posterior SD
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Setting a prior on ν

Of course, one may ask, why a t5 distribution?

Since we do not actually know ν, it would be more reasonable
to include ν as a parameter in our model; the only condition is
that we must place a prior on it

A reasonably uninformative prior would seem to be ν ∝ ν−1;
i.e., nu ∼ dgamma(.001,.001) in BUGS
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Posterior
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Climb (100 ft):
Mean SD

Normal 1.11 0.21
t5 0.81 0.15
ν ∝ ν−1 0.69 0.10

Distance (1 mi):
Mean SD

Normal 6.21 0.62
t5 6.59 0.29
ν ∝ ν−1 6.56 0.24
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Puromycin data

Another desirable extension is the ability to fit a nonlinear
model

Our illustrating data set here is a study of the reaction
kinetics of an enzyme called galactosyltransferase

The recorded variables are Conc, the concentration of the
enzyme’s substrate (in ppm) and Rate, the reaction rate (in
DPM/min)

Furthermore, there were two experimental groups: 12 from
cells treated with an antibiotic called puromycin, and an
untreated control group of sample size 11
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Puromycin data: Illustration
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MichaelisMenten kinetics

The standard model for the study of these kinds of reactions is the
Michaelis-Menten model:

v =
Vm[S]

K + [S]
,

where v is the reaction rate, [S] is the substrate concentration, Vm
is the maximum rate, and K is the substrate concentration at
which v is one-half Vm
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BUGS code

We can implement this model in BUGS as follows:

for (i in 1:n) {

Rate[i] ~ dnorm(mu[i], tau)

mu[i] <- (Vm[State[i]]*Conc[i])/(K[State[i]]+Conc[i])

}

for (j in 1:2) {

Vm[j] ~ dunif(0,500)

K[j] ~ dunif(0,2)

}

tau ~ dgamma(0.001, 0.001)

Note the use of “nested indexing” to match observation i up with
its correct state
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Posterior: Vm
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Posterior: K
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Posterior: Efficiency

A commonly used measure of enzyme efficiency is Vm/K, the
slope at [S] = 0:
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Fitted curves
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Overview

Of course, a very important class of extensions to linear
regression are the generalized linear models (GLMs)

Analogous to frequentist GLMs, in which there is no
closed-form solution for β̂, we do not generally have conjugate
relationships in Bayesian GLMs

Nevertheless, fitting Bayesian GLMs is straightforward with
MCMC; indeed, the MCMC approach is more flexible than the
iteratively reweighted least squares approach used in
frequentist GLMs, and can even applied to distributions
outside the exponential family
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Logistic regression

Perhaps the common specific model in the GLM family is
logistic regression:

Yi|θi ∼ Binom(ni, θi)

g(θi) = ηi

ηi = xTi β

In logistic regression, we use the “canonical” link:

ηi = log

(
θi

1− θi

)
θi =

eηi

1 + eηi
;

this function is known as the “logit” of θi
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Beetle data

A classic data set used to illustrate logistic regression is the
beetle mortality data from Bliss (1935)

The data (beetles.txt) consists of 8 experiments in which
beetles were exposed to various concentrations of carbon
disulphide (a fumigant) for five hours

The response variable is the number of beetles killed by the
fumigant, with dose being the explanatory variable
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Beetle data: summary

Dose n Killed

1.69 59 6
1.72 60 13
1.76 62 18
1.78 56 28
1.81 63 52
1.84 59 53
1.86 62 61
1.88 60 60
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Implementation

The logistic regression model is easily implemented in BUGS:

## Likelihood

for (i in 1:N) {

y[i] ~ dbinom(theta[i], n[i])

logit(theta[i]) <- beta[1] + beta[2]*Dose[i]

}

## Prior

for (j in 1:2) {

beta[j] ~ dnorm(0, 0.0001)

}
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Posterior

1.65 1.70 1.75 1.80 1.85 1.90

0.0

0.2

0.4

0.6

0.8

1.0

Dose

P
(K

ill
)

●

●

●

●

●

●

● ●

Posterior odds ratio and 95% CI
for a difference of 0.05 units:

Mean Lower Upper
5.8 4.5 7.4

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 22/32



Robust regression
Nonlinear regression

Generalized linear models
Further extensions

Lethal dose quantiles

A common quantity of interest in a study such as this one is
the appropriate dose to kill a certain percent of beetles,
typically abbreviated LD50 for the median lethal dose

For a specified percent, this is merely a function of the
parameters and thus straightforward to sample from:

LDπ = β−1
1

{
log

(
π

1− π

)
− β0

}
For this experiment, we have LD50 = 1.77(1.765, 1.778) and
LD99 = 1.90(1.89, 1.93)
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Introduction

One of the strengths of BUGS and MCMC approaches is the
ease with which models can be extended in order to account
for the complexities of real data

We will look at one such example here, in which we extend a
Poisson regression model with a mixture distribution to
account for an excess of zeros in the data
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Rooting dataset

Our data here come from a horticultural experiment in which
apple shoots of the “Trajan” cultivar were grown under
various experimental conditions

The outcome variable is the number of roots produced by the
plant

Two possible explanatory variables are Photoperiod, the
length of daily exposure to light (in hours) and Dose, the soil
concentration of a plant growth ctyokinin called BAP
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Roots data
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Mixture distribution

The covariates are able to explain some of the mass at zero,
but it is clear that there are simply far more zeros in the data
set than the Poisson distribution can account for

One possibility, then, is to assume that Y follows a mixture
distribution:

Y |µ, π ∼

{
Pois(µ) with probability π

0 with probability 1-π

This sort of model is known as a zero-inflated Poisson, or ZIP
model
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ZIP model

In the presence of covariates, we would need to include a
model for how µ and π depend on the explanatory variables,
the most natural model being

log(µ) = Xβ log

(
π

1− π

)
= Zγ

This model allows for different effects and even different
covariates to be involved with each aspect of the mixture; a
simpler and more stable, albeit less flexible, model is to
assume

log(µ) = Xβ log

(
π

1− π

)
= τXβ
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BUGS implementation

Here is an implementation in BUGS taking the first approach, and
leaving out Dose for the sake of simplicity

## Likelihood

for (i in 1:n) {

Roots[i] ~ dpois(m[i])

m[i] <- group[i] * mu[Photoperiod[i]]

group[i] ~ dbern(pi[Photoperiod[i]])

}

## Prior

for (j in 1:2) {

mu[j] ~ dgamma(0.5, 0.0001)

pi[j] ~ dunif(0, 1)

}
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Posterior: π
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Posterior: µ

5 6 7 8

0.0

0.5

1.0

1.5

µ

D
en

si
ty

8 16

Posterior means, 90% intervals
Mean Lower Upper
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Note that the actual difference in means in the two groups is much
larger than the difference in means for the Poisson portion of the
mixture
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Distribution
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