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Introduction

Typically, once a model has more than one parameter, it is
not possible to find conjugate priors anymore – obviously, this
rules out virtually all interesting analyses

In particular, even the normal distribution with its two
parameters, µ and σ2, cannot be analyzed with conjugate
methods

Conjugate approaches do exist, however, for each parameter
individually, if we were to act as if the other parameter was
known

This lecture explores those approaches, both because it lends
insight into normal models and because it illustrates the basic
idea of Gibbs sampling
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Conjugate prior for the normal mean

First, let’s suppose that the variance σ2 is known

Exercise: For Yi
iid∼ N(θ, σ2) with σ2 known, the conjugate

prior for θ is also normal

Note that this requires “completing the square”:

x2 + bx+ c =

(
x+

1

2
b

)2

+ k,

where the two expressions differ only with respect to the
constant term

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 3/33



Known variance
Known mean

Sampling from the posterior

Posterior distribution

Thus, if the prior distribution on the mean is

θ ∼ N
(
µ0,

σ2

n0

)
,

the posterior distribution is

θ|y ∼ N
(
µn,

σ2

n0 + n

)
,

where

µn =
n0µ0 + nȳ

n0 + n
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Shrinkage

Note that the posterior mean can also be written as

µn = wµ0 + (1− w)ȳ

where

w =
n0

n0 + n

Thus, as we have seen with other distributions, the posterior
mean is a weighted average of the prior mean and sample
mean, with the relative weights determined by the sample size
and prior variance (which is in turn determined here by n0,
the “effective prior sample size”)

This phenomenon, where the posterior is shrunk towards the
prior, is often referred to as shrinkage; we will see examples of
shrinkage throughout this course
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Precision

Recall that the precision is the inverse of the variance:
τ = 1/σ2

Again, it is important to distinguish between the precision
with which we know the mean (let’s call this ω) and the
precision that reflects the fundamental variability of the
outcome (let’s call this τ), so that our model is:

Yi ∼ N(θ, τ−1)

θ ∼ N(µ0, ω
−1
0 )
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Precision (cont’d)

Now, our posterior for θ is

θ|y ∼ N(µn, ω
−1
n )

where

µn =
ω0µ0 + nτȳ

ω0 + nτ

ωn = ω0 + nτ ;

in other words, the posterior precision for the mean is the sum
of the prior precision and the information (recall that nτ is the
Fisher information)

As noted previously, BUGS and JAGS parameterize the normal
distribution in terms of the precision, as it is typically easier to
work with in Bayesian calculations
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Predictive distribution

The posterior predictive distribution for the normal mean case
is particularly easy to think about, as it is equivalent to the
sum of two independent normal quantities: ε ∼ N(0, σ2) and
θ|y ∼ N(µn, σ

2
θ)

Thus,

Y |y ∼ N(µn, σ
2 + σ2θ)

This is the same approach used in frequentist “prediction
intervals”; one of the rare cases where it is possible in
frequentist statistics to take parameter uncertainty into
account when carrying out prediction
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Reference priors

For the normal distribution, I(θ) = 1
σ2

This is constant with respect to theta; thus, the Jeffreys
approach would suggest a uniform (or “flat”) distribution over
the entire real line

Obviously, this is improper

BUGS does provide a dflat distribution; JAGS does not,
although the same basic effect may be realized by either
taking theta ∼ dunif(-100, 100) (or some other very
wide range) or theta ∼ dnorm(0, 0.0001) (or some other
very small precision)
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Example: THM in tap water

Water companies and the EPA regularly monitor the
concentrations of various chemicals that are present in tap
water

This example deals with measurements of trihalomethanes
(THMs), which are thought to be carcinogenic in humans at
high concentrations

Suppose that an assay has a known measurement error of
σ = 5µg/L, and that, for a certain water supply, the
measurements are 128 µg/L and 132 µg/L
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Uninformative prior

Suppose we used an uninformative prior:
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θ̂ = θ̄ = 130

HDI95 = (123.1, 136.9)

Note that in this case, the posterior mean is identical to the
posterior mode, the HPD interval is identical to the central
interval, and all of these results are identical to that of a standard
frequentist analysis
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Informative prior

Suppose, however, that historical data on THM levels from
other water supplies have a mean of 120 µg/L and a standard
deviation of 10 µg/L

This suggests a prior on θ, the THM concentration of the
water supply under investigation, of θ ∼ N(120, 102)

With the parameterization we have been using,
n0 = 52/102 = 1/4; i.e., the prior counts for about 1/4th of
an observation
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Informative prior (cont’d)

With the informative prior:
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Informative Reference

θ̂ = θ̄ = 128.9

HDI95 = (122.4, 135.4)

Note that the informative prior pulls the posterior to the left as
well as makes it narrower
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Conjugate prior #1

Let us now reverse the situation, and suppose that we know
the mean µ of the normal distribution, but that the variance θ
is unknown

Rather than work with the variance, however, we will find it
easier to work with the precision τ

Exercise: For Yi
iid∼ N(µ, τ−1) with µ known, the conjugate

prior for τ is Gamma

Exercise: For τ ∼ Gamma(α, β),

τ |y ∼ Gamma

(
α+

n

2
, β +

1

2
RSS

)
,

where RSS =
∑

i(yi − µ)2
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Conjugate prior #2

An equivalent way of expressing the conjugate prior is as a
scaled χ2 distribution: if cX ∼ χ2(ν) for a positive constant
c, then X ∼ Gamma(ν/2, c/2)

I will use the expression Scaled-χ2(ν, c) to denote this
distribution (which, of course, is a Gamma distribution, just
with an alternate parameterization)

What does this mean for specifying a prior?

If we let τ ∼ Scaled-χ2(n0,RSS0), then

τ |y ∼ Scaled-χ2(n0 + n,RSS0 + RSS)
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Conjugate priors for σ2?

Are there conjugate priors for σ2? Sort of

Yes, in the sense that if X ∼ Gamma, then 1/X is said to
follow an “inverse-gamma” distribution; similarly there is an
“scaled inverse χ2” distribution

These distributions do have closed forms for their distribution
functions, mean, variance, mode, etc., but are not familiar to
most people and cannot be directly specified in BUGS/JAGS
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Reference priors

With a Gaussian distribution, the Fisher information for the
standard deviation is I(σ) = 2/σ2; the Jeffreys prior is
therefore p(σ) ∝ σ−1

The Jeffreys prior for the precision is also p(τ) ∝ τ−1

These are improper, but can be approximated in BUGS/JAGS
with dgamma(0.0001, 0.0001)

Alternatively, the Jeffreys prior on log(σ) is p(log σ) ∝ 1

This is obviously improper, but can be approximated with
log.sigma ∼ dunif(-10,10)
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THM example

Let’s continue with our THM example, but now suppose that
we are assessing the variability of the instrument by taking a
few measurements on a sample with known concentration of
100 µg/L

Suppose that we obtained two measurements: 105 µg/L and
110 µg/L (i.e., measurement errors of 5 and 10 µg/L)

We’ll analyze this data with both a reference prior and an
informative prior

For the latter, suppose we have a vague notion that the
standard deviation is about 5, so we use a scaled χ2

distribution with RSS0 = 25, n0 = 1
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Results
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Reference Informative

Reference Informative
σ̂ 6.5 6.1
σ̄ 14.0 9.8
SD(σ) 24.4 7.3
CI95 (4.1,49.7) (4.0,26.4)
HDI95 (2.8,34.7) (3.1,20.9)
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Gibbs sampling
Example
Issues

Multiple unknown parameters

Typically, of course, neither the mean nor the variance of the
distribution are known; what then?

We have previously considered some models with multiple
parameters; for example the two-sample Poisson childbirth
data

In that situation, the priors for λ1 and λ2 (the childbirth rates
for the two education levels) were independent, as were the
data from the two groups

Thus, we could obtain the posterior distributions for λ1 and
λ2 separately, and use conjugate results for each parameter
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Semi-conjugacy

This is not the case for the normal distribution: the posterior
distributions for µ and σ2 are dependent on each other and
there is no standard parametric distribution which is conjugate
for their joint likelihood

However, as we have seen, µ and σ2 (or τ) have conjugate
distributions if we condition on knowing the other
parameter(s) in the model

This phenomenon is known as semi-conjugacy; although it
does not lead to closed-form solutions for the entire posterior,
it will help us to sample from it
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A sampler

Our sampling approach will be as follows:

Set some initial value for τ : τ0
For b = 1, 2, . . . , B,

Draw µb ∼ N(µn, ω
−1
n )|τ = τb−1

Draw τb ∼ Scaled-χ2(n+ n0,RSS + RSS0)|µ = µb

Alternatively, we could have drawn τ first, then µ; the order is not
important
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Gibbs sampling

The algorithm on the previous slide is an example of a Gibbs
sampler

We’ll discuss Gibbs sampling in more detail later on, but the
example illustrates the basic idea: we sample each parameter
individually, conditioning on the most recent values of the
other parameters

This idea is not without its flaws (we will see one of them in a
moment), but its huge virtue is that it allows us to sample
from extremely complicated and high-dimensional posterior
distributions by breaking the problem down into sampling one
parameter at a time
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Gibbs sampler: R code

gibbs <- function(x, mu, omega, n0, RSS0, B=10000) {

n <- length(x)

ybar <- mean(x)

tau.init <- 1/var(x)

theta <- matrix(NA, nrow=B, ncol=2)

for (b in 1:B) {

inf <- if (b==1) n*tau.init else n*theta[b-1,2]

Mu <- (omega*mu + inf*ybar)/(omega+inf)

Omega <- omega+inf

theta[b,1] <- rnorm(1, Mu, sd=1/sqrt(Omega))

RSS <- sum((x-theta[b,1])^2)

theta[b,2] <- rgamma(1, (n0+n)/2, (RSS+RSS0)/2)

}

theta

}
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Results: Mean

Below is the marginal distribution of θ, the expected value of Y :
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σ unknown σ = 6

σ unknown σ = 6
θ̄ 130.7 130.7
SD(θ) 10.7 3.5
CI95 (114.9,145.7) (123.8,137.5)
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Averaging over unknown parameters

Note that we obtain the marginal distribution for θ by
integrating σ out of the joint distribution; with Monte Carlo
integration, this integral is approximated by the simpler
process of averaging over the unknown parameters

Not surprisingly, this causes the posterior distribution to
become more spread out, but note that its very shape
changes: θ|y no longer follows a normal distribution; its tails
are much thicker
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Connection with Student’s t

In fact, it can be shown that if

X|τ ∼ N(µ, τ−1)

τ ∼ Gamma(α, β),

then X follows a t distribution

Thus, in this particular case (provided we use reference
priors), we again obtain standard frequentist results

However, it is worth noting that this phenomenon arises
naturally in Bayesian statistics, and will continue to arise in
ever more complicated models; this is typically not the case in
frequentist statistics
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Results: σ

A similar phenomenon occurs with the posterior distribution of σ:
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µ unknown µ = 130.7
σ̄ 10.8 6.8
SD(σ) 15.6 4.8
HDI95 (2.2, 27.1) (2.2, 14.8)
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Dependency in Gibbs samplers

In this particular example, the Gibbs sampler worked
beautifully; as alluded to earlier, however, this is not always
the case

It is tempting to think that with Gibbs sampling, we are
obtaining independent draws from the posterior, but that is
not the case: when we draw τb, it depends on θb, which in
turn depends on τb−1, so consecutive draws of τ (and θ) are
dependent
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Problematic example

To see an example of this, suppose we fit the following model in
JAGS:

model <- function() {

## Likelihood

for (i in 1:n) {

x[i] ~ dnorm(mu, pow(sigma.sq, -1))

}

## Prior

mu ~ dnorm(0, 0.0001)

sigma.sq ~ dunif(0, 1e7)

}
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Problematic results

We obtain:
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The posterior distribution for σ2 is nowhere even close to
5,000,000 in reality; what’s going on?
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An explanation

What has happened is the following: if you do not supply an
initial value to BUGS/JAGS, it will generate them from the
prior: in this case, σ2 is drawn from a Unif(0, 107)
distribution, which produced 5,005,129

With a variance this large and only three observations, the
mean, θ, could be almost anywhere

This causes the Gibbs sampler to just bounce around in the
extreme tails of the posterior and never find the central mass
of the posterior
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Final remarks

From now on, we’ll be doing a lot of Gibbs sampling, but keep this
example in mind as a cautionary tale:

We may need to give thought to initial values

“Uninformative” priors can be problematic, especially when
using ones which are not invariant

We need to be careful when carrying out Gibbs sampling to
check that this sort of thing has not happened to us (we will
be discussing diagnostic methods for such checking in future
lectures)
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