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Introduction

Binomial data is not the only example in which Bayesian
solutions can be worked out in closed form

Today’s topic is other one-parameter models in which
conjugacy can be employed

These models are interesting and useful on their own, as well
as serving as building blocks for more complicated models
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Conjugate prior

First, let’s consider the Poisson distribution: Y ∼ Pois(θ),
with likelihood

L(θ|y) ∝ θye−θ

We may recognize this as the kernel of a Gamma distribution:

p(θ|α, β) ∝ θα−1e−θβ for θ > 0

Thus, if we let θ have a Gamma prior, the posterior
distribution will also be in the Gamma family
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Posterior

Specifically, if we let θ ∼ Gamma(α, β),

θ|y ∼ Gamma(α+ y, β + 1)

Note that if Yi
iid∼ Pois(θ), then

∑
i Yi ∼ Pois(nθ)

Thus, we also have that if we observe n iid Poisson random
variables {Yi} and let θ ∼ Gamma(α, β),

θ|y ∼ Gamma

(
α+

∑
i

yi, β + n

)
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Jeffreys prior

For the Poisson likelihood, the Jeffreys prior is p(θ) ∝ θ−1/2
(homework)

Unfortunately, θ−1/2 is not integrable over [0,∞)

This doesn’t necessarily cause a problem, though – note that
the Jeffreys prior can be thought of as a Gamma(12 , 0)
distribution, leading to the posterior θ|y ∼ Gamma(12 + y, 1)

Note, however, that a Gamma(12 , 0) distribution is not really
a distribution, in that it cannot integrate to 1
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Improper priors

Such a distribution is said to be improper; the use of them in
Bayesian statistics is perhaps somewhat controversial

Some statisticians have argued that such distributions cannot
legitimately represent a prior belief and thus cannot be a
rational part of Bayesian statistics

However, most Bayesian statisticians consider them reasonable
in the sense of representing a limit of proper posteriors:

Gamma

(
1

2
, 0

)
= lim

β→0
Gamma

(
1

2
, β

)
,

with the posterior representing a similarly limiting case

Nevertheless, it is important to be careful when dealing with
improper priors; the limiting distribution idea produces
reasonable conclusions only if the posterior is guaranteed to
be proper
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Example

The General Social Survey (GSS) is a sociological survey of
United States residents carried out every other year by the
National Opinion Research Center at the University of Chicago

The survey collected data on 155 women who were 40 years of
age or older in the 1990s

Among the 155 women were 111 whose highest educational
level was less than a bachelor’s degree (these women had a
total of 217 children) and 44 women with at least a bachelor’s
degree (these women had a total of 66 children)
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Example (cont’d)

Using the (improper) Jeffreys priors:
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Distribution of θ|y vs. Y |y

It is worth distinguishing between the distribution of θ|y,
which represents our uncertainty about the average number of
children in these two groups, and the distribution of the actual
number of children in the two groups

We can derive this distribution as well, however; letting Y
denote the random number of children a woman in a
particular group might have and y the observed data,

p(Y |y) =
∫
p(Y |θ)p(θ|y)dθ

. . .

= NegBin

(
an,

bn
bn + 1

)
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Posterior predictive distributions

This idea of integrating over θ (or “marginalizing over” θ)
applies to any random quantity of interest ω that depends on
the posterior distribution:

p(ω) =

∫
p(ω|θ, y)p(θ|y)dθ,

and is an essential idea in Bayesian inference and decision
theory

This is sometimes called the posterior predictive distribution;
we will see many more examples throughout the course
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Distribution of Y |y
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Remarks

Note that

The means, E(θ|y) and E(Y |y), are exactly the same

The variance of Y |y is much larger than the variance of θ|y;
correspondingly, the distributions of Y |y overlap heavily,
unlike those of θ|y
This is a crucial distinction in both Bayesian and frequentist
statistics: strong evidence of a difference between two
populations does not mean that the difference itself is large
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Remarks (cont’d)

Var(Y |y) is larger than the variance we would get if we simply
plugged in the mean as a point estimate

This is an appealing point of Bayesian statistics; with a few
exceptions, in frequentist statistics we must simply plug a
point estimate (usually the MLE) into a predictive distribution

This fails to account for the multiple sources of variability
(random variability in the quantity of interest and uncertainty
about θ), and leads to prediction intervals that are too narrow
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Conjugate prior, posterior

Next, let us consider the exponential distribution:

L(θ|y) = θe−θy

Note that the exponential distribution also has the gamma as
a conjugate prior, leading to the posterior distribution

θ|y ∼ Gamma

(
α+ n, β +

∑
i

yi

)
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Combining conjugate analyses

Even when all parameters can be analyzed using conjugate
methods, Monte Carlo methods may still be required to study
the posterior distribution of a quantity of interest

For example, consider the (hypothetical) heart transplant
study in section 3.5 of our book:

10 patients receive a heart transplant, of which 8 survive
The surviving patients are monitored, and survive for 2, 3, 4,
4, 6, 7, 10, and 12 years following the transplant

If we assume that, given transplant success, survival time
follows an exponential distribution, we can carry out separate
conjugate analyses for π, the probability of success, and λ, the
survival rate
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Transplant example

Our quantity of interest, however, is ω = π/λ, the average
total survival

We can calculate its posterior through Monte Carlo means,
drawing π and λ from their posterior distributions and then
taking the Monte Carlo integral of π/λ, which has posterior
mean 5.1 years

Suppose that the average life span of a patient who does not
receive a transplant is 2 years; we would be interested in
Pr(ω > 2|y), which is 99%

Note, again, that this is very different from the posterior
probability that an individual patient will survive at least 2
years, which is only 55%
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Summary

We have looked at binomial, exponential, and Poisson
likelihoods, but all distributions in the exponential family have
natural conjugate priors; Table 3.1 in our text provides a list
along with posteriors and predictive distributions

Up next: distributions with two (or more) parameters, in
particular the normal distribution
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