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Introduction

As our first substantive example of Bayesian inference, we will
analyze binomial data

This type of data is particularly amenable to Bayesian
analysis, as it can be analyzed without MCMC sampling, and
thus has played an important historical role in the field

Our motivating example for today is a study which took place
at Johns Hopkins to estimate the survival chances of infants
born prematurely by surveying the records of babies born at
their hospital in a three-year period

In their study, they found 39 babies who were born at 25
weeks gestation, 31 of which survived at least 6 months
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Uniform prior

It seems reasonable to assume that the number of babies who
survive (Y ) follows a binomial distribution:

p(y|θ) =

(
n

y

)
θy(1− θ)n−y

Suppose we let θ ∼ Unif(0, 1) (we will have a much more
thorough discussion of priors later); then

p(θ|y) ∝ θy(1− θ)n−y

We can recognize this as a beta distribution; in particular,

θ|y ∼ Beta(y + 1, n− y + 1)
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Conjugacy and the beta-binomial model

Suppose more generally that we had allowed θ to follow a
more general beta distribution:

θ ∼ Beta(α, β)

(note that the uniform distribution is a special case of the
beta distribution, with α = β = 1)

In this case, θ still follows a beta distributon:

θ|y ∼ Beta(y + α, n− y + β)

This phenomenon is referred to as conjugacy: the posterior
distribution has the same parametric form as the prior
distribution (in this case, the beta distribution is said to be
the conjugate prior for the binomial likelihood)
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Summarizing the posterior

The fact that θ|y follows a well-known distribution allows us to
obtain closed-form expressions for quantities of interest, for
example:

Posterior mean:

θ̄ = E(θ|y) =
α+ y

α+ β + n

Posterior mode:

θ̂ =
α+ y − 1

α+ β + n− 2

Posterior variance:

Var(θ|y) =
(α+ y)(β + n− y)

(α+ β + n)2(α+ β + n+ 1)
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Premature birth example
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SDpost = 0.064
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Posterior intervals

Although the quantiles of a beta distribution do not have a
closed form, they are easily calculated by any statistical
software program (e.g., the qbeta function in R)

Quantiles allow for the easy construction of intervals that
have a specified probability of containing the outcome

For example, we may construct a 90% posterior interval by
finding the 5th and 95th percentiles of the posterior
distribution

For the premature birth example, this interval is (0.668, 0.877)
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Interpretation of posterior intervals

It is worth comparing the interpretation of this posterior
interval (also referred to as a credible interval) with the
frequentist interpretation of a confidence interval

It is absolutely correct in Bayesian inference to say that “there
is a 90% chance that the true probability of survival is
between 66.8% and 87.7%”

It is incorrect, however, to make a similar statement in
frequentist statistics, where the properties of a confidence
interval must be described in terms of the long-run frequency
of coverage for confidence intervals constructed by the same
method
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HPD intervals

Note that the quantile-based interval we calculated is not
unique: there are many intervals that contain 90% of the
posterior probability

An alternative approach to constructing the interval is to find
the region satisfying: (i) the region contains (1− α)% of the
posterior probability and (ii) every point in the region has
higher posterior density than every point outside the region
(note that this interval is unique)

This interval is known as the highest posterior density, or
HPD inveral; in contrast, the previous interval is known as the
central interval, as it contains by construction the middle
(1− α)% of the posterior distribution
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HPD vs. central intervals

For the premature birth example, the two approaches give:

Central : (66.8, 87.7)

HPD : (67.8, 88.5)

The primary argument for the HPD interval is that it is
guaranteed to be the shortest possible (1− α)% posterior
interval

The primary argument for the central interval is that it is
invariant to monotone transformations (it is also easier to
calculate)
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Similarities to Frequentist approaches

In many ways, the conclusions we arrive at with the Bayesian
analysis are similar to those we would have obtained from a
frequentist approach:

The MLE, θ̂ = 31/39 = 0.795, is exactly the same as the
posterior mode and very close to the posterior mean (0.780)

The standard error,
√
θ̂(1− θ̂)/n = 0.065, is very close to the

posterior standard deviation (0.064)

The (Wald) confidence interval is (0.69, 0.90), close to the
HPD interval (0.68, 0.89)

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 11/29



Binomial data
Bayesian vs. Frequentist conclusions

The prior

Proportions near 0 or 1

However, this is not always the case

For example, the Johns Hopkins researchers also found 29
infants born at 22 weeks gestation, none of which survived

This sort of situation (and more generally, when the MLE
occurs at the boundary of the parameter space) causes
problems for frequentist approaches, but presents no problem
for the Bayesian analysis
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Problems with frequentist approaches

In contrast, the (Wald) frequentist approach produces
nonsensical estimates for the standard error (0) and a 95%
confidence interval (0, 0)

To be fair, alternative frequentist approaches for constructing
CIs exist for this problem, such as inverting the score test (0,
0.117) and inverting the exact binomial test (0, 0.119)

However, these approaches do not always achieve correct
coverage – in this particular case, they both produce a more
conservative interval than the Bayesian approach
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Informative vs. non-informative priors

Thus far, we’ve focused on the prior θ ∼ Unif(0, 1) as a way
of expressing a belief, before seeing any data, that all
proportions are equally likely, or in other words a lack of any
particular belief regarding θ

A basic division may be made between “non-informative”
priors such as these and “informative” priors explicitly
intended to incorporate external information

These priors, and the resulting posteriors, serve different
purposes: the former is in some sense an attempt to convince
everyone, while the latter may be intended only to allow one
individual reach a conclusion
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Informative priors

Informative priors are well suited to research groups trying to
use all of the information at their disposal to make the
quickest possible progress

For example, in trying to plan future studies and experiments
about possible drugs to follow up on, a drug company may
wish to take as much information (from animal studies, pilot
studies, studies on related drugs, studies conducted by other
groups, etc.) as possible into account when constructing a
prior
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Reference priors

On the other hand, the drug company could not expect to
convince the at-large research community (or the FDA) with
such a prior

Thus, even if the drug company did not actually believe in a
uniform prior, they might still wish to conduct an analysis
using this prior for the sake of arriving at more universally
acceptable conclusions

To emphasize this point, non-informative priors are often
called reference priors, as their intent is to provide a universal
reference point regardless of actual prior belief (note: the term
“reference prior” is given a much more specific meaning in
Bernardo (1979) and in later papers by Berger and Bernardo)

Other names include “default” priors, “vague” priors,
“diffuse” priors, and “objective” priors
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Problems with labels

The term “non-informative” is potentially somewhat
misleading, as all priors contain some information in some
sense of the word

The term “objective” is potentially misleading when applied
to any analysis (frequentist or Bayesian), as fundamentally
subjective decisions must be made in terms of selecting the
model, distributional assumptions, etc.

A clear-cut distinction between informative and reference
priors is potentially misleading, as it is often reasonable to use
reference priors for parameters of interest, and informative
priors for nuisance parameters
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Information is not invariant

As an example of the problem in saying a prior has “no
information”, consider transforming the variable of interest:

ψ = log
θ

1− θ
Our uniform prior on θ, which stated that all probabilities
were equally likely, is stating that log-odds values near 0 are
more likely than others:
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Jeffreys priors

The statistician Harold Jeffreys developed a proposal for prior
distributions which would make them invariant to such
transformations, at least with respect to the Fisher
information:

I(θ) = E

{(
d

dθ
log p(Y |θ)

)2
}

Thus, by the chain rule, the information for ψ = f(θ) satisfies

I(θ) = I(ψ)

∣∣∣∣dψdθ
∣∣∣∣2
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Jeffreys priors (cont’d)

Now, if we select priors according to the rule p(θ) ∝ I(θ)1/2,
we have invariance with respect to the information:

p(ψ) = p(θ)

∣∣∣∣ dθdψ
∣∣∣∣

= I(θ)1/2
∣∣∣∣ dθdψ

∣∣∣∣
= I(ψ)1/2,

which is the same prior we would have if we parameterized the
model in terms of ψ directly

Various other formal rules for specifying automatic prior
distributions have been proposed, although the Jeffreys (1946)
approach is the most well-known
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Jeffreys prior for premature birth example

For the binomial likelihood, the Jeffreys prior is θ ∼ Beta(12 ,
1
2):

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

θ

P
rio

r 
de

ns
ity

θ̄ = 0.788

θ̂ = 0.803

SDpost = 0.064

HDI90 : (0.686, 0.892)

Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 22/29



Binomial data
Bayesian vs. Frequentist conclusions

The prior

Informative vs. reference priors
Jeffreys priors
Posterior as compromise

Prior sensitivity

Note that the posterior didn’t change much between the
uniform and Jeffreys priors

This is good; it would be an unattractive feature of Bayesian
inference if two reasonable-sounding priors led to drastically
different conclusions

This is not always the case – certain models or data can lead
to unstable inference in which the prior has a large influence
on the posterior

This phenomenon is called sensitivity to the prior, and good
Bayesian analyses often consist of several priors to illustrate
how robust the conclusions are to the specification of the prior
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Informative prior for premature birth data

Of course, an informative prior can exert greater influence
over the posterior

Let’s analyze our premature birth data one more time: this
time, let’s suppose that there had been some previous studies
that had suggested that the probability of survival was around
60%, and that it was rather unlikely to be close to 0% or
100%

We might propose, in this situation, a θ ∼ Beta(7, 5) prior

Note that conjugacy is often helpful when thinking about
priors: this is the same as the posterior we would obtain with
a uniform prior after seeing 6 successes and 4 failures, thereby
carrying an “effective prior sample size” of 12 (or 10 more
than the reference prior)
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Premature birth example, informative prior
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Sequential updating

Note that the posterior we obtain, θ|y ∼ Beta(38, 13), is the
same as what we would obtain if we had started from a
uniform prior, stopped and conducted an analysis after
observing 6 successes and 4 failures, then used the posterior
from that analysis as the prior for analyzing the rest of the
data

Indeed, we could have stopped and analyzed the data after
each observation, with each posterior forming the prior for the
next analysis, and it would not affect our conclusions; this is
known as sequential updating
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Posterior as compromise

Note also that the posterior is in some sense a compromise
between the prior and the likelihood

This is true in a more formal sense as well:

α+ y

α+ β + n
= w

α

α+ β
+ (1− w)

y

n
;

in other words, the posterior mean is a weighted average of
the prior mean and the sample mean

This makes intuitive sense, as the posterior combines
information from both sources
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Posterior variance inequality

Given that we are adding information from the data to the
prior, one might expect that we have less uncertainty in the
posterior than we had in the prior; this is also true, at least on
average

Theorem: Var(θ) ≥ E(Var(θ|Y ))

Note that this is true generally for Bayesian inference; nothing
specific to the binomial distribution was used in the proof
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Concentration of posterior mass

Indeed, letting θ0 denote the unobservable true value of θ,
note that

θ̄
P−→ θ0

Var(θ|y)
P−→ 0

Thus, θ|y converges in distribution to one which places a
point mass of 1 on θ0

In other words, given enough data, the likelihood will
overwhelm the prior and there will no longer be any
uncertainty about θ (this is also usually true in Bayesian
statistics)
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