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Connections between parametric and nonparametric theory

Score function vs. influence function

You may have noticed some strong similarities between the
influence function and the score function from parametric
maximum likelihood estimation

Letting Uθ(x) =
d
dθ `(θ|x) denote the score function, in

parametric estimation we have

EUθ(X) = 0

V(θ̂) ≈ 1

nV{Uθ(X)}

=
1

nE{U2
θ (X)}

For an observed set of data, {Uθ̂(xi)} are called the score
components
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Score function vs. influence function (cont’d)

In nonparametric estimation we have

ELF (X) = 0

V(θ̂) ≈ V{LF (X)}
n

=
E{L2

F (X)}
n

For an observed set of data, {LF̂ (xi)} are called the influence
components
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Connections between parametric and nonparametric theory

Influence function of a parametric model

This connection is not a coincidence; there exists a close
relationship between the influence function and the score
function of a parametric model

We can see this relationship directly by deriving the influence
function of a parametric model

Theorem: For a parametric model,

Lθ(x) = i(θ)−1Uθ(x),

where i(θ) is the Fisher information

Thus, the score function and the influence function are scalar
multiples of each other, and the multiplication factor is the
Fisher information
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Connections between parametric and nonparametric theory

Parametric estimation of variance

Note that this reconciles our two definitions:

V(θ̂) ≈
E{L2

θ(X)}
n

=
E{U2

θ (X)}
ni(θ)2

=
1

ni(θ)

Thus, the usual Fisher information method for estimation of
variance in a parametric model can be thought of as an
influence-function based estimate
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Semiparametric estimation of variance

It is worth noting that E{U2
θ (X)} = i(θ) only if the

parametric model is correct

Maybe it would be a good idea to estimate V(θ̂) using
n−1

∑
i L̂(xi)

2, our variance estimate from the nonparametric
delta method

If we did so, our variance estimate would be

n−1
∑

i Lθ̂(xi)
2

n
=
n−1

∑
i Uθ̂(xi)

2

ni(θ)2
,
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Semiparametric estimation of variance (cont’d)

In many applications, it turns out that this is indeed a very
useful improvement upon the parametric estimation of
variance, and provides a consistent estimate for the true
variance of θ̂ even if the parametric model is incorrect

The approach goes by several names:

Robust standard errors
Semiparametric estimation of variance
The “sandwich estimator”

The last name comes from the vector-based version of the
formula:

V̂(θ̂) = n−1i(θ)−1

{
1

n

∑
i

Uθ(xi)Uθ(xi)
T

}
i(θ)−1
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