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The conditioning idea

In many hypothesis testing problems, information can be
divided into portions that pertain to the hypothesis and
portions that do not

The usual approach is to condition on the portions which do
not pertain to the null hypothesis, thereby obtaining a more
powerful test that focuses on the relevant aspects of the data

Parametric examples:

Comparison of Poisson rates
Fisher’s Exact Test
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Nonparametric conditioning

In nonparametric settings, we will usually be conditioning on
the observed values of the data: {xi}
Under the null hypothesis that all these observed values are
being drawn independently from a single distribution F , all
permutations of {xi} are equally likely

This fact can be used to carry out permutation tests of null
hypotheses, conditional on the observed values, without
assuming anything about F
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Decomposition

Let us introduce the following notation, decomposing x into
two parts:

Let x(·) denote the vector of order statistics
Let r denote the vector of ranks; i.e.,

ri =
∑
j

I(xj ≤ xi)

We will ignore the possibility of ties in this course, although
be aware the above definition must be modified when ties are
present

Note that this is indeed a decomposition:

Given x, we can construct x(·) and r
Given x(·) and r, we can recover x
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The three null hypotheses: Introduction

Three null hypotheses are common in nonparametric
statistics, although of course, others are possible

We will abbreviate them H0, H1, and H2
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H0

H0 is the hypothesis of i.i.d. data

Specifically, H0 : f(x) =
∏
f(xi)

Theorem: Under H0,

(i) r and x(·) are independent

(ii) P(r = r∗) = 1
n! for all r∗ ∈ R, where R is the set of all

permutations of {1, . . . , n}
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H1

H1 is the hypothesis of symmetric i.i.d. data

Specifically, H1 supposes that H0 holds and that
f(x) = f(−x)
To handle this null hypothesis, we alter our decomposition in
the following way: let

Let si = sign(xi)
|x|(·) the order statistics of {|x1| , . . . , |xn|}
r+i denote the rank of |xi| among {|x1| , . . . , |xn|}
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H1 (cont’d)

Theorem: Under H1,

(i) s, r+, and |x|(·) are mutually independent

(ii) P(s = s∗) =
(
1
2

)n
, where s∗ is any n-vector of {−1, 1}

(iii) P(r+ = r∗) = 1
n!
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H2

H2 is the hypothesis of independence of X and Y

Specifically, H2 hypothesizes that f(x,y) =
∏

i g(xi)h(yi),
where g and h are arbitrary density functions

Theorem: Letting q denote the vector of ranks of y, the
following hold under H2:

(i) r, q, x(·), and y(·) are all mutually independent

(ii) P(r = r∗) = P(q = q∗) = 1
n!
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Test statistics

Permutation tests, like all hypothesis tests, begin with a test
statistic T

Examples: Difference in means, t-test statistic, difference in
medians

Any statistic can be used with the permutation test, but

To remain sensible, T should change in a monotone fashion as
the evidence against H0 grows stronger
Some test statistics will have greater power than others
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Achieved significance level

Having observed T̂ , the achieved significance level (ASL) of
the test is the probability of observing at least that large a
value when H0 is true:

ASL = P0{T (X∗) ≥ T (x)},

where X∗ follows the null distribution

For the hypotheses defined earlier, the above null distribution
is straightforward to evaluate via permutation testing because
for each hypothesis, all permutations of the ranks occur with
equal probability
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Achieved significance level (cont’d)

Thus, the null distribution of T (X∗), conditional on the order
statistics, is known

For example, under H0, the null distribution places probability
1/n! on each x(r∗) for r∗ ∈ R, so that

ASL =
1

n!

∑
R

1 {T (x∗) ≥ T (x)}

Theorem: For any sample size n, any distribution F , and any
α ∈ (0, 1),

P0{ASL ≤ α} ≤ α
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Monte Carlo integration

The ASL is straightforward to calculate, but not easy, because
n! is a big number

Thus, in practice, ASL is usually approximated via the
following Monte Carlo algorithm:

(1) Draw r∗ randomly from R B times
(2) For each r∗, calculate T̂ ∗ = T (x(·), r

∗)

(3) ÂSL = B−1
∑

1(T̂ ∗
b ≥ T̂ )

By the law of large numbers, ÂSL converges to ASL
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Homework

Homework: Define the “accuracy” of a Monte Carlo
approximation to be the standard error of ÂSL over the true ASL.

(a) How many permutations are needed to achieve 10% accuracy
when ASL = .1?

(b) How many permutations are needed to achieve 10% accuracy
when ASL = .01?
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Homework

The website has data from a study which examined the
driving habits of illegal drug users as compared to non-illegal
drug users

The outcome we will look at is following distance

It may be hypothesized that drug users like to engage in risky
behavior and follow at closer speeds than other drivers
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Homework:

(a) Test the null hypothesis that the mean following distance of
drug users is the same as that of non-illegal drug users using a
t-test

(b) Test the null hypothesis that the distribution of following
distance is the same in both groups using a permutation test
with test statistic:

T =

∣∣∣∣∣
∑

i gix(r∗i )∑
i gi

−
∑

i(1− gi)x(r∗i )∑
i(1− gi)

∣∣∣∣∣ ,
where gi is a 0-1 indicator of group membership

(c) Test the same null hypothesis using a test statistic that
compares the absolute difference of medians of the two groups

(d) Briefly comment on the results of the three tests
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