Bootstrap Confidence Intervals

Patrick Breheny

September 18

Introduction

The bootstrap-*t* interval The percentile interval BC_a intervals

- So far, we have discussed the idea behind the bootstrap and how it can be used to estimate standard errors
- Standard errors are often used to construct confidence intervals based on the estimate having a normal sampling distribution:

$$\hat{\theta} \pm z_{1-\alpha/2}SE;$$

alternatively, the interval could be based on the t distribution

• The bootstrap SE can be used in this way as well

Introduction

The bootstrap-*t* interval The percentile interval BC_a intervals

- \bullet However, recall that the bootstrap can also be used to estimate the CDF G of $\hat{\theta}$
- Thus, with the bootstrap, we do not need to make assumptions/approximations concerning the sampling distribution of $\hat{\theta}$ we can estimate it as part of the confidence interval procedure
- This has been an active area of theoretical research into the bootstrap

The bootstrap-t interval The percentile interval BC_a intervals

The bootstrap-t interval

- For example, suppose that the standard error of an estimate varies with the size of the estimate
- If this is so, then our confidence interval should be wider on the right side than it is on the left
- One way to implement this idea is to estimate the SE separately for each bootstrap replication this is the idea behind the *bootstrap-t interval*

The bootstrap-t interval The percentile interval BC_a intervals

The bootstrap-*t* interval: Procedure

The procedure of the *bootstrap-t* interval is as follows:

(1) For each bootstrap sample, compute

$$z_b^* = \frac{\hat{\theta}_b^* - \hat{\theta}}{\widehat{SE}_b^*}$$

where \widehat{SE}_{b}^{*} is an estimate of the standard error of $\hat{\theta}^{*}$ based on the data in the *b*th bootstrap sample (2) Estimate the α th percentile of z^{*} by the value \hat{t}_{α} such that

$$B^{-1}\sum_{b}I(z_{b}^{*}\leq\hat{t}_{\alpha})=\alpha$$

(3) A $1 - \alpha$ confidence interval for θ is then

$$(\hat{\theta} - \hat{t}_{1-\alpha/2}\widehat{SE}, \hat{\theta} - \hat{t}_{\alpha/2}\widehat{SE})$$

The bootstrap-t interval The percentile interval BC_a intervals

The bootstrap-*t* interval: Example

- As a small example, the survival times of 9 rats were 10, 27, 30, 40, 46, 51, 52, 104, and 146 days
- Consider estimating the mean; the point estimates are $\hat{\theta}=56.2$ and $\widehat{SE}=14.1$
- The percentile points for a 95% confidence interval:

Normal	-1.96	1.96
t	-2.31	2.31
Bootstrap- t	-4.86	1.61

• This translates into the following confidence intervals:

Normal	28.5	84.0
t	23.6	88.9
Bootstrap- t	33.4	125.1

The bootstrap-*t* interval The percentile interval BC_a intervals

The bootstrap-t interval: R

- If you want to implement this confidence interval in R, your function that you pass to boot will need to return two things: $\hat{\theta}_b^*$ and $\hat{\mathbb{V}}(\hat{\theta}_b^*)$
- For example:

```
mean.boot <- function(x, ind) {
    c(mean(x[ind]), var(x[ind])/length(x))
}
out <- boot(x, mean.boot, 999)
boot.ci(out)</pre>
```

• The function boot.ci returns the bootstrap-t interval (which it calls the "studentized" interval) along with the normal interval and some other intervals which we will talk about next

The bootstrap-*t* interval The percentile interval BC_a intervals

Double bootstrap

- Estimation of \widehat{SE}_b^* is straightforward for the mean (and a few other statistics), but what about in general?
- Once again, the functional delta method and jackknife are options
- The bootstrap is also an option here we use the bootstrap within a bootstrap replication to estimate the standard error of a bootstrap replication – and is called the *double bootstrap*
- The obvious drawback to the double bootstrap is that it requires B^2 bootstrap replications, and is therefore time-consuming to compute

Confidence intervals and sampling distributions

- The next interval we will discuss is not based on the usual pivoting ideas we encounter when constructing confidence intervals
- Instead, it is based on the observation that, if $\hat{\theta}^* \sim N(\hat{\theta}, \widehat{SE}^2)$,

$$\hat{\theta} \pm \widehat{\mathrm{SE}} z_{1-\alpha/2} = (\hat{\theta}^*_{\alpha/2}, \hat{\theta}^*_{1-\alpha/2})$$

is a $1-\alpha$ level confidence interval for $\theta,$ where $\hat{\theta}^*_\alpha$ is the αth percentile of the distribution of $\hat{\theta}^*$

- Letting \hat{G} the empirical CDF of $\hat{\theta}^*$, another way of writing the above interval is $[\hat{G}^{-1}(\alpha/2), \hat{G}^{-1}(1-\alpha/2)]$
- Thus, there is a connection (at least, if $\hat{\theta}^* \sim \text{Normal}$) between the resampling distribution of $\hat{\theta}^*$ and confidence intervals for θ

The bootstrap-t interval The percentile interval BC_a intervals

The percentile interval

- This interval called the *percentile interval* is much simpler to construct than the bootstrap-*t*, and turns out to work surprisingly well in a wide range of examples
- The percentile interval has an additional justification beyond approximation to the normal: it is invariant to transformations of θ
- For example, suppose we wish to construct a confidence interval for $\phi = m(\theta)$, where m is a monotone transformation
- We do not need to generate new bootstrap replications: $\hat{\phi}_b^* = m(\hat{\theta}_b^*),$ because

$$\left(\hat{\phi}_{\alpha/2},\hat{\phi}_{1-\alpha/2}\right) = \left[m(\hat{\theta}_{\alpha/2}),m(\hat{\theta}_{1-\alpha/2})\right]$$

The bootstrap-t interval The percentile interval BC_a intervals

Percentile interval theorem

- In the 20th century, statisticians explored dozens of transformations of various statistics designed to make the sampling distribution of the statistic more normal, from simple ones like the log-odds to more complex ones like the Fisher and Anscombe transformations
- One compelling justification for the percentile interval is that, if such a transformation exists, the percentile interval will find it automatically
- Theorem: Suppose there exists $\phi = m(\theta)$ such that

$$\hat{\phi}^* \sim N\left(\hat{\phi}, \tau^2\right)$$

for some τ . Then the percentile interval $(\hat{\theta}^*_{\alpha/2}, \hat{\theta}^*_{1-\alpha/2})$ is equivalent to the optimal pivot-based interval based on the above relationship.

The bootstrap-t interval The percentile interval BC_a intervals

Example: Automatic transformation

- As an example, suppose $X_1, \ldots, X_{10} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$, and we are interested in estimating $\theta = e^{\mu}$
- In this case, there does exist a normalizing transformation $\phi=\log(\theta)$ such that $\hat{\phi}\sim N(\phi,\tau^2)$
- Suppose, however, that we didn't know any of this and applied the ordinary nonparametric bootstrap:

	$\hat{ heta}_L$	$\hat{ heta}_U$
Exact	0.49	2.29
Normal bootstrap	0.15	1.81
Percentile interval	0.50	2.10

The bootstrap-t interval The percentile interval BC_a intervals

Percentile intervals in R

- Percentile intervals are also returned by boot.ci
- They can also be obtained by applying quantile to the output of boot
- For the mouse survival data from earlier,

Normal	28.5	84.0
t	23.6	88.9
Bootstrap- t	33.4	125.1
Percentile	32.1	87.7

The bootstrap-t interval The percentile interval BC_a intervals

Standard vs. bootstrap approach

• The standard approach is based on taking literally the following asymptotic relationship

$$\frac{\hat{\theta} - \theta}{\sigma} \sim N(0, 1)$$

 The bootstrap percentile interval relaxes that assumption; instead of requiring normality of θ̂, it requires only that ∃ m : φ = m(θ) satisfies

$$\frac{\hat{\phi} - \phi}{\tau} \sim N(0, 1)$$

 However, this still requires that there exists a single transformation that is both normalizing and variance-stabilizing – often, such a transformation does not exist

Generalizing the bootstrap assumptions

- Thus, in a brilliant 1987 paper, Efron considers a generalization of the bootstrap assumptions
- Suppose that for some monotone increasing transformation m, some bias constant z_0 , and some acceleration constant a, the following relationship holds for $\phi = m(\theta)$:

$$\frac{\hat{\phi} - \phi}{\sigma} \sim N(-z_0, 1), \qquad \sigma = 1 + a\phi$$

• Efron named the confidence interval based on this assumption the ${\rm BC}_a$ interval, because it corrects for both bias and "acceleration" of the variance

The bootstrap-t interval The percentile interval BC_a intervals

The BC_a interval

• **Theorem**: If the relationship on the previous slide holds, then the following interval is "correct," in the sense of being the optimal pivot-based interval:

$$\theta \in \left[\hat{G}^{-1}\left\{\Phi(z[\alpha])\right\}, \hat{G}^{-1}\left\{\Phi(z[1-\alpha])\right\}\right]$$

where

$$z[\alpha] = z_0 + \frac{z_0 + z^{(\alpha)}}{1 - a(z_0 + z^{(\alpha)})}.$$

• Note that, in order to construct the BC_a interval, one has to estimate z_0 and a, but, like the percentile interval, it is not necessary to know m

The bootstrap-t interval The percentile interval BC_a intervals

Example revisited

- Unfortunately, we don't have time to cover in detail the derivation of this interval and the estimation of z_0 and a, but it is available from boot.ci
- When applied to our mouse survival data, we have $\hat{z}_0 = -0.026$ and $\hat{a} = 0.066$, which gives us the adjusted percentage points (0.037, 0.986) and the resulting interval

Normal	28.5	84.0
t	23.6	88.9
Bootstrap- t	33.4	125.1
Percentile	32.1	87.7
BC_a	37.3	90.9

Asymptotic accuracy of confidence intervals

- Let us denote a confidence interval procedure by its confidence points $\hat{\theta}[\alpha]$, where ideally, $\mathbb{P}(\theta \leq \hat{\theta}[\alpha]) = \alpha$
- A confidence point is called first-order accurate if

$$\mathbb{P}(\theta \le \hat{\theta}[\alpha]) = \alpha + O(n^{-1/2})$$

and second-order accurate if

$$\mathbb{P}(\theta \leq \hat{\theta}[\alpha]) = \alpha + O(n^{-1})$$

Second-order accuracy of bootstrap confidence intervals

- It can be shown (our textbook has some details on this and the regularity conditions that are required) that the standard interval and the percentile interval are first-order accurate, while the bootstrap-t and BC_a intervals are second-order accurate – regardless of the true distribution, F
- This is a powerful theoretical justification for the bootstrap-t and ${
 m BC}_a$ intervals
- Arguments can be made for either interval in different situations
- The BC_a interval is also transformation-invariant and range-preserving, meaning that, if it is not possible for a statistic or a function of a statistic to lie outside a certain range [a, b], then the BC_a interval will be contained in [a, b] (the bootstrap-t intervals are neither transformation-invariant nor range-preserving)

Bootstrap failure #1

- Bootstrap confidence intervals are unquestionably a tremendous methodological advance, and the BC_a interval represents the "state of the art" as far as nonparametric confidence intervals goes
- However, bootstrap intervals are limited by the accuracy of \hat{F}
- The empirical CDF is generally poorly estimated at the tails of a distribution
- Consequently, it is difficult to produce nonparametric confidence intervals for statistics that are highly influenced by distribution tails

Bootstrap failure #2

- Furthermore, the bootstrap still requires conditions such as Hadamard differentiability and can fail to produce accurate intervals when those conditions do not hold
- We have already encountered the example of density estimation
- As an additional example, consider $\hat{\theta} = \max(x_i)$
- The BC_a interval can never exceed $\hat{G}^{-1}(1) = \max(x_i)$, and therefore provides a 0% confidence interval for any continuous distribution

Homework

- In an earlier homework, we examined the coverage probabilities of parametric and nonparametric confidence intervals for the variance
- Your assignment now is to compare three nonparametric methods: the functional delta method, the bootstrap percentile interval, and the BC_a interval
- Homework: Conduct a simulation study to determine how the coverage probability and average interval width of these two intervals varies with the sample size *n*, when (i) the data is truly normally distributed, and (ii) the data follows an exponential distribution. For each distribution, produce a plot of coverage probability versus sample size, with lines representing the various methods, as well as a corresponding plot for interval width.