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Nonparametric vs. parametric statistics

The main idea of nonparametric statistics is to make
inferences about unknown quantities without resorting to
simple parametric reductions of the problem

For example, suppose X ∼ F , and we wish to estimate, say
E(X) or P(X > 1)

The approach taken by parametric statistics is to assume that
F belongs to a family of distribution functions that can be
described by a small number of parameters – e.g., the normal
distribution:

f(x) =
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
These parameters are then estimated, and we make inferences
about the quantities we were originally interested in (E(X) or
P(X > 1)) based on assuming X ∼ N(µ̂, σ̂2)
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Parametric statistics (cont’d)

Or suppose we wish to know how E(Y ) changes with x

Again, the parametric approach is to assume that

E(Y |x) = α+ βx

We estimate α and β, then base all future inference on those
estimates

Patrick Breheny STA 621: Nonparametric Statistics 3/19



Introduction
The empirical distribution function

Shortcomings of the parametric approach

Both of the aforementioned parametric approach rely on a
tremendous reduction of the original problem

They assume that all uncertainty regarding F (x), or E(Y |x),
can be reduced to just two unknown numbers

If these assumptions are true, then of course, there is nothing
wrong with making them

If they are false, however:

The resulting statistical inference will be questionable
We might miss interesting patterns in the data

Patrick Breheny STA 621: Nonparametric Statistics 4/19



Introduction
The empirical distribution function

The nonparametric approach

In contrast, nonparametric statistics tries to make as few
assumptions as possible about the data

Instead of assuming that F (x) is normal, we will allow F (x)
to be any function (provided, of course, that it satisfies the
definition of a cdf)

Instead of assuming that E(y) is linear in x, we will allow it to
be any continuous function

Obviously, this requires the development of a whole new set of
tools, as instead of estimating parameters, we will be
estimating functions (which are much more complex)
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The four main topics

We will go over four main areas of nonparametric statistics in this
course:

Estimating aspects of the distribution of a random variable

Testing aspects of the distribution of a random variable

Estimating the density of a random variable

Estimating the regression function E(Y |x) = f(x)
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The empirical distribution function

We will begin with the problem of estimating a CDF
(cumulative distribution function)

Suppose X ∼ F , where F (x) = P(X ≤ x) is a distribution
function

The empirical distribution function, F̂ , is the CDF that puts
mass 1/n at each data point xi:

F̂ (x) =
1

n

n∑
i=1

I(xi ≤ x)

where I is the indicator function
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The empirical distribution function in R

R provides the very useful function ecdf for working with the
empirical distribution function

Data <- read.delim("nerve-pulse.txt")

Fhat <- ecdf(Data$time)

> Fhat(0.1)

[1] 0.3829787

> Fhat(0.6)

[1] 0.933667

plot(Fhat)
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Properties of F̂

At any fixed value of x,

E{F̂ (x)} = F (x)

V{F̂ (x)} = 1

n
F (x)(1− F (x))

Note that these two facts imply that

F̂ (x)
P−→ F (x)

for any given x
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The Glivenko-Cantelli Theorem

An even stronger proof of convergence is given by the
Glivenko-Cantelli Theorem

Glivenko-Cantelli Theorem: Suppose X1, X2, . . . are i.i.d.
random variables with cdf F . Then

sup
x

∣∣∣F̂ (x)− F (x)∣∣∣ a.s.−→ 0

This theorem has been called the “fundamental theorem of
(nonparametric) statistics”
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F̂ as a nonparametric MLE

The empirical distribution function can be thought of as a
nonparametric maximum likelihood estimator

Homework: Show that, out of all possible CDFs, F̂
maximizes

L(F |x) =
n∏

i=1

PF (xi)
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Confidence intervals vs. confidence bands

Before moving into the issue of calculating confidence
intervals for F , we need to discuss the notion of a confidence
interval for a function

One approach is to fix x and calculate a confidence interval
for F (x) – i.e., find a region C(x) such that, for any CDF F ,

P{F (x) ∈ C(x)} ≥ 1− α

These intervals are referred to as pointwise confidence
intervals
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Confidence intervals vs. confidence bands (cont’d)

Clearly, however, if there is a 1− α probability that F (x) will
not lie in C(x) at each point x, there is greater than a 1− α
probability that there exists an x such that F (x) will lie
outside C(x)

Thus, a different approach to inference is to find a confidence
region C(x) such that, for any CDF F ,

P{F (x) ∈ C(x) ∀x} ≥ 1− α

These intervals are referred to as confidence bands or
confidence envelopes
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Inference regarding F

We can use the fact that, for each value of x, F̂ (x) follows a
binomial distribution with mean F (x) to construct pointwise
intervals for F

To construct confidence bands, we need a result called the
Dvoretzky-Kiefer-Wolfowitz inequality, or DKW inequality:

P
{
sup
x

∣∣∣F (x)− F̂ (x)∣∣∣ > ε

}
≤ 2 exp(−2nε2)

Note that this is a finite-sample, not an asymptotic, result
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A confidence band for F

Thus, setting the right side of the DKW inequality equal to α,

α = 2 exp(−2nε2)

log
(α
2

)
= −2nε2

log

(
2

α

)
= 2nε2

ε =

√
1

2n
log

(
2

α

)
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A confidence band for F (cont’d)

Thus, the following functions define an upper and lower 1− α
confidence band for any F and n:

L(x) = max{F̂ (x)− ε, 0}
U(x) = min{F̂ (x) + ε, 1}
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Pointwise vs. confidence for nerve pulse data
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Homework

I claimed that the confidence band based on the DKW
inequality worked for any distribution function . . . does it?

Homework: Generate X1, X2, . . . , X100 independent
observations and compute a 95 percent global confidence band
for the CDF F based on the DKW inequality. Repeat this
1000 times and report the proportion of data sets for which
the confidence band contained the true distribution function.

(a) Carry out the above simulation with F = N(0, 1).
(b) Repeat using data generated from the standard Cauchy

distribution.
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